Russian Meteorology and Hydrology

, Volume 43, Issue 11, pp 737–742 | Cite as

Investigation of the Structure and Predictability of the First Mode of Stratospheric Variability Based on the INM RAS Climate Model

  • V. V. VorobyevaEmail author
  • E. M. Volodin


The first empirical orthogonal function (EOF) of intraannual evolution of temperature averaged along the circle of latitude in the 0-60-km layer is calcul ated using the data of the 500-year preindustrial experiment with the climate model of the Institute of Numerical Mathematics of Russian Academy of Sciences (INM RAS). It is shown that the first EOF represents temperature anomalies which propagate downward from the upper stratosphere during December-April. Such anomalies are preceded by the anomaly of the meridional heat flux in the polar upper stratosphere in December. Using the ensemble of numerical experiments with the climate model, it was demonstrated that it is possible to predict the projection of temperature anomaly corresponding to the first EOF in December-April, to the first mode according to initial data for December 1.


Model climate weather seasonal forecast atmosphere stratosphere EOF analysis composites 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. A. Alekseev, E. M. Volodin, V. Ya. Galin, V. P. Dymnikov, and V. N. Lykosov, Modeling of Present–day Climate Using the Atmospheric Model of INM RAS, Preprint No. 2086–B98 (IVM RAN, Moscow, 1998) [in Russian].Google Scholar
  2. 2.
    P. N. Vargin and E. M. Volodin, “Analysis of the Reproduction of Dynamic Processes in the Stratosphere Using the Climate Model of the Institute of Numerical Mathematics, Russian Academy of Sciences,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1, 52 (2016) [Izv., Atmos. Oceanic Phys., No. 1, 52 (2016)].Google Scholar
  3. 3.
    N. A. Dianskii, A. V. Bagno, and V. B. Zalesny, “Sigma Model of Global Ocean Circulation and Its Sensitivity to Variations in Wind Stress,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 38 (2002) [Izv., Atmos. Oceanic Phys., No. 4, 38 (2002)].Google Scholar
  4. 4.
    B. Ayarzaguena, U. Langematz, and E. Serrano, “Tropospheric Forcing of the Stratosphere: A Comparative Study of the Two Different Major Stratospheric Warmings in 2009 and 2010,” J. Geophys. Res., No. D18114, 116 (2011).Google Scholar
  5. 5.
    M. P. Baldwin and T. J. Dunkerton, “Propagation of the Arctic Oscillation from the Stratosphere to the Troposphere,” J. Geophys. Res. Atmos., No. D24, 104 (1999).Google Scholar
  6. 6.
    N. Eguchi, K. Kodera, and T. Nasuno, “A Global Non–hydrostatic Model Study of a Downward Coupling through the Tropical Tropopause Layer during a Stratospheric Sudden Warming,” Atmos. Chem. Phys., No. 1, 15 (2015).Google Scholar
  7. 7.
    M. Gomez–Escolar, N. Calvo, D. Barriopedro, and S. Fueglistaler, “Tropical Response to Stratospheric Sudden Warmings,” J. Geophys. Res. Atmos., No. 12, 119 (2014).Google Scholar
  8. 8.
    L. Goncharenko, A. Coster, J. Chau, and C. Valladares, “Impact of Sudden Stratospheric Warmings on Equatorial Ionization Anomaly,” J. Geophys. Res., 115 (2010).Google Scholar
  9. 9.
    A. J. Haklander, P. C. Siegmund, and H. M. Kelder, “Interannual Variability of the Stratospheric Wave Driving during Northern Winter,” Atmos. Chem. Phys., No. 10, 7 (2007).Google Scholar
  10. 10.
    K. Kodera, “Influence of Stratospheric Sudden Warming on the Equatorial Troposphere,” Geophys. Res. Lett., No. 6, 33 (2006).Google Scholar
  11. 11.
    K. Kodera, B. M. Funatsu, C. Claud, and N. Eguchi, “The Role of Convective Overshooting Clouds in Tropical Stratosphere–troposphere Dynamical Coupling,” Atmos. Chem. Phys., No. 12, 15 (2015).Google Scholar
  12. 12.
    G. Manney, M. Santee, M. Rex, N. Livesey, M. Pitts, P. Veefkind, E. Nash, I. Wohltmann, R. Lehmann, L. Froidevaux, L. Poole, M. Schoeberl, D. Haffner, J. Davies, V. Dorokhov, H. Gernandt, B. Johnson, R. Kivi, E. Kyro, N. Larsen, P. Levelt, A. Makshtas, C. McElroy, H. Nakajima, M. Parrondo, D. Tarasick, P. von der Gathen, K. Walker, and N. Zinoviev, “Unprecedented Arctic Ozone Loss in 2011,” Nature, 478 (2011).Google Scholar
  13. 13.
    R. Scherhag, “Die Explosionsartigen Stratosparenerwarmungen des Spatwinters 1952,” Ber. Dtsch. Wetterdienstes U. S. Zone, No. 38 (1952).Google Scholar
  14. 14.
    R. Ueyama, E. P. Gerber, J. M. Wallace, and D. M. W. Frierson, “The Role of High–latitude Waves in the Intraseasonal to Seasonal Variability of Tropical Upwelling in the Brewer–Dobson Circulation,” J. Atmos. Sci., No. 6, 70 (2013).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  2. 2.Marchuk Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Applied PhysicsRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations