Advertisement

Russian Meteorology and Hydrology

, Volume 43, Issue 11, pp 713–721 | Cite as

Some Results of Studies in the Area of Numerical Weather Prediction and Climate Theory in Siberia

  • N. Krupchatnikov
  • G. A. Platov
  • E. N. Golubeva
  • A. A. Fomenko
  • Yu. Yu. Klevtsova
  • V. N. Lykosov
Article
  • 11 Downloads

Abstract

The results of studies in the area ofnumerical weather prediction and climate theory are presented. These results were obtained by the team of researchers of the Siberian school of mathematical modeling of atmosphere and ocean dynamics established by academician G.I. Marchuk. Academician V.P. Dymnikov played an enormous role in the development of this school by enriching it with new approaches and ideas. His contribution to the Siberian school of mathematical modeling was most strongly pronounced concerning three problems: numerical weather prediction for the Siberian region, the modeling of the climate system dynamics, and the mathematics and theory of climate.

Keywords

Climate system physics numerical simulation of weather and climate dynamics mathematics and climate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. F. Abdurakhimov and V. N. Krupchatnikov, Numerical Simulation and Synoptic Analysis of Cold Front Evolution, Preprint No. 951 (SO AN SSSR VTs, Novosibirsk, 1992) [in Russian].Google Scholar
  2. 2.
    B. F. Abdurakhimov, V. N. Krupchatnikov, and A. A. Fomenko, “Regional Model for Studying the Evolution of High Fronts,” Trudy Tashkentskogo Gos. Un–ta (GU, Tashkent, 1991) [in Russian].Google Scholar
  3. 3.
    I. V. Borovko and V. N. Krupchatnikov, “Responses of the Hadley Cell and Extratropical Troposphere Stratification to Climate Changes Simulated with a Relatively Simple General Circulation Model,” Sibirskii Zhurnal Vychislitel’noi Tekhniki, No. 1, 18 (2015) [Numer. Analys. Appl., No. 1, 18 (2015)].Google Scholar
  4. 4.
    M. V. Vinogradova, L. E. Kaminskaya, Z. D. Kolbasova, V. K. Maev, V. D. Tarasenko, and A. A. Fomenko, “Short–term Numerical Forecast of Meteorological Elements for a Limited Area,” Meteorol. Gidrol., No. 2 (1995) [Russ. Meteorol. Hydrol., No. 2 (1995)].Google Scholar
  5. 5.
    M. V. Vinogradova and A. A. Fomenko, “Nonlinear Normal Mode Initialization for a Limited Area,” Meteorol. Gidrol., No. 2 (1995) [Russ. Meteorol. Hydrol., No. 2 (1995)].Google Scholar
  6. 6.
    E. N. Golubeva and G. A. Platov, “Numerical Modeling of the Arctic Ocean Ice System Response to Variations in the Atmospheric Circulation from 1948 to 2007,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1, 45 (2009) [Izv., Atmos. Oceanic Phys., No. 1, 45 (2009)].Google Scholar
  7. 7.
    E. N. Golubeva, G. A. Platov, and D. F. Yakshina, “Numerical Simulation ofthe Current State of Waters and Sea Ice in the Arctic Ocean,” Led i Sneg, No. 2, 55 (2015) [in Russian].Google Scholar
  8. 8.
    V. P. Dymnikov, Modeling of Moist Atmosphere Dynamics (OVM AN SSSR, Moscow, 1984) [in Russian].Google Scholar
  9. 9.
    V. P. Dymnikov, “On Moist Atmosphere Dynamics,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 12,18 (1982) [in Rus sian].Google Scholar
  10. 10.
    V. P. Dymnikov, “On Some Features of Numerical Solution to the Equation of Atmospheric Moisture Transport,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 5 (1969) [in Russian].Google Scholar
  11. 11.
    V. P. Dymnikov, “On the Development of Baroclinic Instability in the Atmosphere with a Variable Parameter of Static Stability,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 5, 14 (1978) [in Russian].Google Scholar
  12. 12.
    V. P. Dymnikov, “On One Formutation of the Problem of Air Humidky Forecasting,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 12, 7 (1971) [in Russian].Google Scholar
  13. 13.
    V. P. Dymnikov, Stability and Predictability of Large–scale Atmospheric Processes (IVM RAN, Moscow, 2007) [in Russian].Google Scholar
  14. 14.
    V. P. Dymnikov and A. V. Ishimova, “Diabatic Short–range Weather Forecast Model,” Meteorol. Gidrol., No. 6 (1979) [Sov. Meteorol. Hydrol., No. 6 (1979)].Google Scholar
  15. 15.
    V. P. Dymnikov, G. R. Kontarev, N. V. Guseva, I. V. Kolotovkin, A. G. Kulinych, N. P. Gazetova, G. V. Shemetova, L. E. Kaminskaya, and Z. V. Torbina, “Forecast of Meteorological Elements in a Limited Area,” Meteorol. Gidrol., No. 9 (1975) [Sov. Meteorol. Hydrol., No. 9 (1975)].Google Scholar
  16. 16.
    V. P. Dymnikov and A. N. Filatov, Stability of La ge–scale Atmospheric Processes (OVM AN SSSR, Moscow, 1988) [in Russian].Google Scholar
  17. 17.
    S. M. Zulunov, V. N. Krupchatnikov, and A. A. Fomenko, “Methods of Initialization Using Normal Modes for Regional Weather Prediction Models,” Trudy ZapSibNIGMI, No. 89 (1989) [in Russian].Google Scholar
  18. 18.
    L. E. Kaminskaya and A. A. Fomenko, “On the Development of Regional Hydrodynamic Weather Forecasting in Western Siberian Regional Hydrometeorological Institute,” Trudy ZapSibNIGMI, No. 100 (1992) [in Russian].Google Scholar
  19. 19.
    Yu. Yu. Klevtsova, “On the Rate of Convergence as toe of the Distributions of Solutions to the Stationary Measure for the Stochastic System of the Lorenz Model Describing a Baroclinic Atmosphere,” Matematicheskii Sbornik, No. 7, 208 (2017) [in Russian].Google Scholar
  20. 20.
    Yu. Yu. Klevtsova, “Well–posedness of the Cauchy Problem for the Stochastic System for the Lorenz Model for a Baroclinic Atmosphere,” Matematicheskii Sbornik, No. 10, 203 (2012) [in Russian].Google Scholar
  21. 21.
    Yu. Yu. Klevtsova, “On the Existence of a Stationary Measure for the Stochastic System of the Lorenz Model Describing a Baroclinic Atmosphere,” No. 9, 204 (2013) [in Russian].Google Scholar
  22. 22.
    E. G. Klimova and G. S. Rivin, “A Scheme of Three–Dimensional Multivariate Numerical Analysis of Meteorological Data for the Siberian Region,” Meteorol. Gidrol., No. 3 (1992) [Russ. Meteorol. Hydrol., No. 3 (1992)].Google Scholar
  23. 23.
    V. N. Krupchatnikov, Modeling of Surface Processes in the ECSib Climate Model for Atmospheric and Environmental Studies, Preprint No. 1104 (VTs SO RAN, Novosibirsk, 1997) [in Russian].Google Scholar
  24. 24.
    V. N. Krupchatnikov, E. M. Volodin, V. Ya. Galin, and V. N. Lykosov, “Climatology of Surface CO2 Fluxes in a Coupled Model of General Atmospheric Circulation, Vegetation, and Soil: A Case with the Specified Vegetation Architectonics,” in Numerical Mathematics and Mathematical Modeling (Proceedings of International Conference Dedicated to the 75th Birthday of Academician G. I. Marchuk and to 20 Years to the Institute of Numerical Mathematics of RAS, Moscow, Russia, June 19–22, 2000), Vol. 2 [in Russian].Google Scholar
  25. 25.
    V. N. Krupchatnikov and A. I. Krylova, “Simulation of the Atmospheric Methane Cycle Based on Global Monitoring Data,” Optika Atmosfery i Okeana, No. 6–7, 14 (2001) [Atmos. Ocean. Opt., No. 6–7, 14 (2001)].Google Scholar
  26. 26.
    V. N. Krupchatnikov and G. P. Kurbatkin, Modeling of La ge–scale Atmospheric Dynamics. Methods to Diagnose the General Circulation (VTs SO AN SSSR, Novosibirsk, 1991) [in Russian].Google Scholar
  27. 27.
    V. N. Krupchatnikov, V. K. Maev, and A. A. Fomenko, “High–resolution Limited–area Atmospheric Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1, 28 (1992) [in Russian].Google Scholar
  28. 28.
    V. N. Krupchatnikov and A. A. Fomenko, “Mathematical Model of the Regional Climate of Siberia,” Optika Atmosfery i Okeana, No. 6, 12 (1999) [Atmos. Ocean. Opt., No. 6, 12 (1999)].Google Scholar
  29. 29.
    V. N. Krupchatnikov and A. A. Fomenko, The System for Forecasting a–nd Four–dimensional Analysis of Data: The Finite–difference Model, Vol. 1, Dep. in VINITI, 00.00.88, No. 742–GM88 (Novosibirsk, 1988) [in Russian].Google Scholar
  30. 30.
    V. N. Krupchatnikov and A. A. Fomenko, “Numerical Investigation of Atmosphere Response to the Sea Surface Temperature Anomaly in the Pacific Ocean during the Initial Stage of El Nino in 1982–1983,” Itogi Nauki i Tekhniki. Ser. Atmosfera, Okean, Kosmos—Programma "Razrezy,” 8 (1987) [in Russian].Google Scholar
  31. 31.
    V. N. Krupchatnikov and A. A. Fomenko, “Numerical Simulation and Diagnosis of Dynamic Anomalies and Anomalies of Heating Sources in Low Latitudes,” in Investigation of Eddy Dynamics and Energy of the Atmosphere and the Climate Problem (Gidrometeoizdat, Leningrad, 1990) [in Russian].Google Scholar
  32. 32.
    V. N. Krupchatnikov and A. G. Yantsen, Parameterization of Atmosphere–Land Surface Interaction in the General Circulation Model (ECSib), Preprint No. 1013 (VTs SO RAN, Novosibirsk, 1994) [in Russian].Google Scholar
  33. 33.
    V. I. Kuzin, G. A. Platov, and E. N. Golubeva, “Influence that Interannual Variations in Siberian River Discharge Have on Redistribution of Freshwater Fluxes in Arctic Ocean and North Atlantic,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 46 (2010) [Izv., Atmos. Oceanic Phys., No. 6, 46 (2010)].Google Scholar
  34. 34.
    V. I. Kuzin, G. A. Platov, E. N. Golubeva, and V. V. Malakhova, “Certain Results of Numerical Simulation of Processes in the Arctic Ocean,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1, 48 (2012) [Izv., Atmos. Oceanic Phys., No. 1, 48 (2012)].Google Scholar
  35. 35.
    V. I. Kuzin, G. A. Platov, and N. A. Lapteva, “Assessing the Effect of Year–to–year Runoff Variations in Siberian Rivers on Circulation in the Arctic Ocean,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 51 (2015) [Izv., Atmos. Oceanic Phys., No. 4, 51 (2015)].Google Scholar
  36. 36.
    V. N. Lykosov and V. N. Krupchatnikov, “Modern Land Surface Models with a Detailed Description of Hydrology and Biospheric and Soil Processes,” in Biodiversity a–nd Dynamics of Ecosystems: Information Technologies and Modeling, Ed. by V. K. Shumnyi, Yu. I. Shokin, N. A. Kolchanov, and A. M. Fedotov (SO RAN, Novosibirsk, 2006) [in Russian].Google Scholar
  37. 37.
    V. V. Malakhova and E. N. Golubeva, “Estimation of Permafrost Stability on the East Arctic Shelf under the Extreme Climate Warming Scenario for the 21st Century,” Led i Sneg, No. 1, 56 (2016) [in Russian].Google Scholar
  38. 38.
    Yu. V. Martynova and V. N. Krupchatnikov, “Peculiarities of the Dynamics of the General Atmospheric Circulation in Conditions of the Global Climate Change,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 3, 51 (2015) [Izv., Atmos. Oceanic Phys., No. 3, 51 (2015)].Google Scholar
  39. 39.
    G. I. Marchuk, G. R. Kontarev, and G. S. Rivin, “Short–range Weather Forecasting Using Primitive Equations in the Limited Area,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 11, 3 (1967) [in Russian].Google Scholar
  40. 40.
    A. A. Fomenko, “On the Atmosphere Response to the Moisture of Continents,” in Numerical Models of Atmosphere and Ocean Dynamics (Novosibirsk, 1987) [in Russian].Google Scholar
  41. 41.
    I. V. Borovko and V. N. Krupchatnikov, “Responses of the Hadley Cell and Extratropical Troposphere Stratification to Climate Changes Simutated with a Relatively Simple General CÍTCUÍation Model,” Num. Analysis and Appl., No. 1, 8 (2015).Google Scholar
  42. 42.
    J. Charney, “The Dynamics of Long Waves in a Barocline Westerly Current,” J. Meteorol., 4 (1947).Google Scholar
  43. 43.
    I. Dmitrenko, S. Kirillov, L. Tremblay, H. Kassens, O. Anisimov, S. Lavrov, S. Razumov, and M. Grigoriev, “Recent Changes in Shelf Hydrography in the Siberian Arctic: Potential for Subsea Permafrost Instability,” J. Geophys. Res., 116 (2011).Google Scholar
  44. 44.
    E. Eady, “Long Waves and Cyclone Waves,” Tellus, 1 (1949).Google Scholar
  45. 45.
    A. A. Fomenko and V. N. Krupchatnikoff, “A Finite–difference Model of Atmospheric Dynamics with Conservation Laws,” Bull. Novosibirsk Comp. Center, Num. Model. Atmos., Ocean, and Environ. Studies, No. 1 (1993).Google Scholar
  46. 46.
    A. A. Fomenko, V. N. Krupchatnikoff, and A. G. Yantzen, A Finite–difference Model of Atmosphere (ECSib) for Climatic Investigations,Bull. Novosibirsk Comp. Center, um. Model. in Atmos., Ocean, and Environ. Studies, No. 4 (1996).Google Scholar
  47. 47.
    E. Golubeva, G. Platov, V. Malakhova, M. Kraineva, and D. Iakshina, “Modeling the Long–term and Interannual Variability in the Laptev Sea Hydrography and Subsea Permafrost State,” Polarforschung, No. 2, 87 (2018).Google Scholar
  48. 48.
    E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, A. Leetma, R. Reynolds, R. Jenne, and D. Joseph, “The NCEP/NCAR 40–year Reanalysis Project,” Bull. Amer. Meteorol. Soc., 77 (1996).Google Scholar
  49. 49.
    V. Krupchatnikoff, “Simulation of CO2 Exchange in the Atmosphere–Surface Biomes System by Climate Model ECSib,” Russ. J. Numer. Anal. Math. Model., No. 6, 13 (1998).Google Scholar
  50. 50.
    V. N. Krupchatnikoff and A. A. Fomenko, “Numerical Short–range Weather Prediction Model,” Rept. WMO/ICSU World Clim. Res. Prog., No. 13 (1989).Google Scholar
  51. 51.
    V. N. Krupchatnikov, “Global Attractors for the Lorenz Model on the Sphere,” Bull. Novosibirsk Comp. Center, Num. Model., Atmos., Ocean, and Environ. Studies, No. 2 (1995).Google Scholar
  52. 52.
    E. N. Lorenz, “Energy and Numerical Weather Prediction,” Tellus, No. 4, 12 (1960).Google Scholar
  53. 53.
    Yu. Martynova and V. Krupchatnikov, “Influence of Atmospheric CO2 Variation on Storm Track Behavtor,” Geophys. Res. Abstracts, EGU 2015–1991, EGU General Assembly, Vienna, Austria, 12–17 April 2015, Vol. 17 (2015).Google Scholar
  54. 54.
    J. S. Olson, J. A. Watts, and L. J. Allison, Carbon in Live Vegeiaiion of Major World Ecosystem, Report ORNL–5862 (Oak Ridge National Laboratory, Oak Ridge, 1983).Google Scholar
  55. 55.
    G. Platov and E. Klimova, “The Results of Numerical Simulation of the Lena River Runoff with the Assimilation of Satellite Data: Summer 2008,” Bull. Novosibirsk Comp. Center, Num. Model. Atmos., Ocean, and Environ. Studies, No. 14 (2014).Google Scholar
  56. 56.
    G. Platov, V. Krupchatnikov, Yu. Martynova, I. Borovko, and E. Golubeva, “A New Earth’s Climate System Model of Intermediate Complexity, PlaSim–ICMMG–1.0: Description and Performance,” IOP Conference Ser.: Earth Environ. Sci. 96 011002 (2017).Google Scholar
  57. 57.
    R. S. Webb, C. E. Rosenweig, and E. R. Levine, “Specifying Land Surface Characteristics in General Circulation Models: Soil Profile Data Set and Derived Water–holding Capacities,” Glob. Biogeochem. Cycles, 7 (1993).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • N. Krupchatnikov
    • 1
    • 2
    • 3
  • G. A. Platov
    • 2
    • 3
  • E. N. Golubeva
    • 2
    • 3
  • A. A. Fomenko
    • 1
    • 2
  • Yu. Yu. Klevtsova
    • 1
    • 4
  • V. N. Lykosov
    • 5
    • 6
  1. 1.Siberian Regional Hydrometeorological Research InstituteNovosibirskRussia
  2. 2.Institute of Computational Mathematics and Mathematical Geophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia
  4. 4.Siberian State University of Telecommunications and Information SciencesNovosibirskRussia
  5. 5.Marchuk Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia
  6. 6.Lomonosov Moscow State University, GSP-1Leninskie GoryMoscowRussia

Personalised recommendations