Advertisement

Russian Meteorology and Hydrology

, Volume 43, Issue 9, pp 591–598 | Cite as

Using δ18O as a Tracer of the Formation of Water Masses in the Laptev Sea. Part 1. Quantification of Ice Formation and Melting

  • I. A. Semeryuk
  • A. A. Namyatov
Article
  • 7 Downloads

Abstract

Data on salinity and δ18O from the NASA open-source database are used to estimate the Laptev Sea water mass transformation during ice formation and melting. The indicator of these processes is salinity variation. The estimates for the Laptev Sea show that the amount of meltwater can reach 40% for the sea water with salinity below 7 psu. In this case, sea water salinity reduction due to the meltwater inflow alone can be equal to 0.2-0.7 psu. In the sea water with salinity above 7 psu, ice formation prevails over ice melting. This process is the most strongly pronounced in the range of sea water salinity from 15 to 25 psu. In this salinity range, the average water removal for the ice formation makes up 9% (the maximum is 24%), and the average salinity growth is 0.5 psu (the maximum is 1.7 psu). The most transformed sea water masses during ice formation are located in the bottom layer of the shallow southern and southeastern parts of the Laptev Sea, where the sea depth is not more than 50 m.

Keywords

Oxygen isotope fractionation ice formation ice melting Atlantic water river water sea water 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. S. Vlasova, A. P. Makkaveev, and P. N. Makkaveev, “Dissolved Inorganic Carbon in the Waters of the Southeastern Part of the Barents Sea (Pechora Sea),” Okeanologiya, No. 2, 45 (2005) [Oceanology, No. 2, 45 (2005)].Google Scholar
  2. 2.
    A. D. Dobrovol'skii and B. S. Zalogin, The USSR Seas (MGU, Moscow, 1982) [in Russian].Google Scholar
  3. 3.
    P. N. Makkaveev, P. A. Stunzhas, and P. V. Khlebopashev, “The Distinguishing of the Ob and Yenisei Waters in the Desalinated Lenses of the Kara Sea in 1993 and 2007,” Okeanologiya, No. 5, 50 (2010) [Oceanology, No. 5, 50 (2010)].Google Scholar
  4. 4.
    O. I. Mamaev, Thermohaline Analysis of the World Ocean Water (Gidrometeoizdat, Leningrad, 1987) [in Russian].Google Scholar
  5. 5.
    O. I. Mamaev, Physical Oceanography: Selected Papers (VNIRO, Moscow, 2000) [in Russian].Google Scholar
  6. 6.
    A. A. Namyatov and I. A. Semeryuk, “Using 518O for the Analysis of Water Mass Origin for the Laptev Sea,” Problemy Arktiki i Antarktiki, No. 4 (2013) [in Russian].Google Scholar
  7. 7.
    E. G. Nikiforov and A. O. Shpaikher, Regularities of Formation of Large-scale Oscillations of Hydrological Regime of the Arctic Ocean (Gidrometeoizdat, Leningrad, 1980) [in Russian].Google Scholar
  8. 8.
    Review of Hydrometeorological Processes in the Arctic Ocean in 2013 (AANII, St. Petersburg, 2014) [in Russian].Google Scholar
  9. 9.
    E. P. Abrahamsen, M. P. Meredith, K. K. Falkner, S. Torres-Valdes, M. J. Leng, M. B. Alkire, S. Bacon, S. W. Laxon, I. Poyakov, and V. V. Ivanov, “Tracer-derived Freshwater Composition of the Siberian Continental Shelf and Slope Folowing the Extreme Arctic Summer of 2007,” Geophys. Res. Lett., 36 (2009).Google Scholar
  10. 10.
    D. Bauch, I. Dmitrenko, C. Wegner, J. Hoemann, S. Kirillov, L. Timokhov, and H. Kassens, “Exchange of Laptev Sea and Arctic Ocean Halocline Waters in Response to Atmospheric Forcing,” J. Geophys. Res., 114 (2009).Google Scholar
  11. 11.
    D. Bauch, M. Groger, I. Dmitrenko, J. Holemann, S. Kirillov, A. Mackensen, E. Taldenkova, and N. Andersen, “Atmospheric Controlled Freshwater Release at the Laptev Sea Continental Margin,” Poar Res., 30 (2011).Google Scholar
  12. 12.
    D. Bauch, P. Schlosser, and R. F. Fairbanks, “Freshwater Balance and the Sources of Deep and Bottom Waters in the Arctic Ocean Inferred from the Distribution of H218O,” Progr. Oceanogr., 35 (1995).Google Scholar
  13. 13.
    M. Frank, Spurenstoffuntersuchungen zur Zikrulation im Eurasischen Becken des Nordpolarmeeres, Ph. D Thesis (Ruprecht Karls Univ., Heidelberg, Genmany, 1996).Google Scholar
  14. 14.
    R. Letole, J. M. Martin, A. J. Thomas, V. V. Gordeev, S. Gusarova, and L. S. Sidorov, “18O Abundance and Dissoved Silicate in the Lena Delta and the Laptev Sea (Russia),” Mar. Chem., 43 (1993).Google Scholar
  15. 15.
    T. Mueller-Lupp, H. Erlenkeuser, and H. A. Bauch, “Seasonal and Interannual Variability of Siberian River Discharge in the Laptev Sea Inferred from Stable Isotopes in Modern Bivalves,” Boreas, 32 (2003).Google Scholar
  16. 16.
    NASA. Online Version, https://doi.org/data.giss.nasa.gov/pl8data/ref.html (Accessed on April 29, 2013).
  17. 17.
    H. G. Ostlund and G. Hut, “Arctic Ocean Water Mass Balance from Isotope Data,” J. Geophys. Res., 89 (1984).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Fertoing Ltd.St. PetersburgRussia

Personalised recommendations