Russian Meteorology and Hydrology

, Volume 43, Issue 8, pp 520–529 | Cite as

Calculation of Precipitation Layer as a Water Balance Component of the Sea of Azov

  • V. P. EvstigneevEmail author
  • D. V. Mishin
  • L. P. Ostroumova


A statistical model of the spatial coupling of precipitation over the Sea of Azov is constructed using SEVIRI radiometer data. The set of four locations of precipitation field was identified to retrieve integral precipitation layer over the sea. It was found that the model can be applied for the water-balance studies of the Sea of Azov based on data from coastal weather stations.


Precipitation layer statistical methods the Sea of Azov SEVIRI weather station network water balance precipitation measurement correction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. G. Bogdanova, V. S. Golubev, B. M. Il’in, and I. V. Dragomilova, “New Model for Correction of Measured Precipitation and Its Use in Russian Polar Regions,” Meteorol. Gidrol., No. 10 (2002) [Russ. Meteorol. Hydrol., No. 10 (2002)].Google Scholar
  2. 2.
    A. P. Braslavskii and L. P. Ostroumova, “Determination of Precipitation Layer over Lake Balkhash,” Trudy Kazakhskogo Regional’nogo Nauchno-issledovatel’skogo Gidrometeorologicheskogo Instituta, No. 104 (1989) [in Russian].Google Scholar
  3. 3.
    A. P. Braslavskii, L. R. Struzer, and K. B. Shergina, “A Method for Determination of Corrected Values of Measured Precipitation,” Trudy GGO, No. 341 (1975) [in Russian].Google Scholar
  4. 4.
    E. V. Volkova, “Estimation of Total Precipitation Using SEVIRI/Meteosat-9,10 and AVHRR/NOAA Data for the European Territory of Russia,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 4, 11 (2014) [in Russian].Google Scholar
  5. 5.
    E. V. Volkova and A. B. Uspenskii, “Automatic Estimation of Cloud Cover Parameters from Meteosat-9 Geostationary Meteorological Satellite Data for Day and Night Time,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 3, 7 (2010) [in Russian].Google Scholar
  6. 6.
    L. S. Gandin and R. L. Kagan, Statistical Methods for Interpretation of Meteorological Data (Gidrometeoizdat, Leningrad, 1976) [in Russian].Google Scholar
  7. 7.
    Hydrometeorology and Hydrochemistry of the USSR Seas, Vol. 5: The Sea of Azov (Gidrometeoizdat, St. Petersburg, 1991) [in Russian].Google Scholar
  8. 8.
    Methods for Investigation and Calculation of Water Balance, Ed. by V. S.Vuglinskii, G. S. Klein, I. N. Obraztsov, G. A. Plitkin, À. À. Sokolov, and N. N. Fedorov (Gidrometeoizdat, Leningrad, 1981) [in Russian].Google Scholar
  9. 9.
    Manual for Hydrometeorological Stations, Issue 3, Part 1 (Gidrometeoizdat, Leningrad, 1985) [in Russian].Google Scholar
  10. 10.
    L. P. Ostroumova, “Determination of Real Values of Precipitation Based on Weather Stations Observations Used in the Northern Caspian Water Balance,” Trudy GOIN, No. 215 (2014) [in Russian].Google Scholar
  11. 11.
    G. A. F. Seber, Linear Regression Analysis (Mir, Moscow, 1980) [Transl. from Eng lish].Google Scholar
  12. 12.
    H. Akaike, “A New Look at the Statistical Model Identification,” IEEE Trans. Automatic Control, No. 6, 19 (1974).Google Scholar
  13. 13.
    R. D. Cook, “Detection of In fluential Observation in Linear Regression,” Technometrics, No. 1, 19 (1977).Google Scholar
  14. 14.
    R. D. Cook and S. Weisberg, Residuals and Influence in Regression (Chapman and Hall, New York–London, 1982).Google Scholar
  15. 15.
    J. Fox and G. Monette, “Gener alized Collinearity Diagnostics,” JASA, 87 (1992).Google Scholar
  16. 16.
    A. Giannakos and H. Feidas, “Classification of Convective and Stratiform Rain Based on the Spectral and Textural Features of Meteosat Second Generation Infrared Data,” Theor. Appl. Climatol., 113 (2013).Google Scholar
  17. 17.
    T. Heinemann, A. Latanzio, and F. Roveda, “The Eumetsat Multi-sensor Precipitation estimation (MPE),” in Proceedings of the Second International Precipitation Working Group (IPWG) Meeting, Madrid, Spain, September 2002.Google Scholar
  18. 18.
    C. Kidd, V. Levizzani, and S. Laviola, “Quantitative Precipitation Estimation from Earth Observation Satellites, Rain fall: State of the Science,” in Geophysical Monograph Series, No. 191 (2010).Google Scholar
  19. 19.
    M. Kuhnlein, T. Appelhans, B. Thies, and T. Naub, “Precipitation estimations from MSG SEVIRI Day time, Night time, and Twi light Data with Random Forests,” J. Appl. Meteorol. Climatol., 53 (2014).Google Scholar
  20. 20.
    E. A. Pena and E. H. Slate, “Global Validation of Linear Model Assumptions,” J. Amer. Statist. Assoc., No. 473, 101 (2006).Google Scholar
  21. 21.
    R Core Team, A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (Vienna, Austria, 2012), Scholar
  22. 22.
    R. A. Roebeling and I. Holleman, “SEVIRI Rain fall Retrieval and Validation Using Weather Radar Observations,” J. Geophys. Res., 114 (2009).Google Scholar
  23. 23.
    P. T. Stol, “The Relative Efficiency of the Density of Rain-gage Network,” J. Hydrol., 15 (1972).Google Scholar
  24. 24.
    X. L. Wang, H. Chen, Y. Wu, Y. Feng, and Q. Pu, “New Techniques for Detection and Adjustment of Shifts in Daily Precipitation Data Series,” J. Appl. Meteorol. Climatol., 49 (2010).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. P. Evstigneev
    • 1
    • 2
  • D. V. Mishin
    • 3
  • L. P. Ostroumova
    • 3
  1. 1.Sevastopol Center for Hydrometeorology and Environmental MonitoringSevastopol, Republic of CrimeaRussia
  2. 2.Sevastopol State UniversitySevastopol, Republic of CrimeaRussia
  3. 3.Zubov State Oceanographic InstituteMoscowRussia

Personalised recommendations