Russian Meteorology and Hydrology

, Volume 43, Issue 8, pp 506–515 | Cite as

Changes in Cu Characteristics and Precipitation during Cu Merging

  • A. A. Sin’kevichEmail author
  • V. B. Popov
  • I. A. Tarabukin
  • E. V. Dorofeev
  • Yu. A. Dovgalyuk
  • N. E. Veremei
  • Yu. P. Mikhailovskii
  • V. S. Snegurov
  • A. V. Snegurov


The results of investigation of convective cloud merging observed near Saint Petersburg are presented. Data obtained with a set of remote sensing instruments (radar, radiometer, and lightning location system) were analyzed. Rain gage network data are used. Clouds simulation is performed using a 1.5-dimensional nonstationary model. A method to calibrate the radar measurements to obtain precipitation characteristics using rain gage network data is developed. According to radar data, a 2-km increase in the cloud top height was observed after Cu merging, the maximum reflectivity of clouds increased at 10 dBZ, maximum rain intensity and rain flux increased by about two times. The increase in rainfall intensity is also corroborated by rain gage observations and numerical simulations. An increase in the intensity of lightning discharges during the merging is registered.


Cu Cu merging rain intensity reflectivity simulation of Cu development 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. T. Abshaev, “Structure and Dynamics of Development of Thunder-hail Processes in the North Caucasus,” Trudy VGI, No. 53 (1984) [in Russian].Google Scholar
  2. 2.
    A. Kh. Adzhiev, V. N. Stasenko, and V. O. Tapaskhanov, “Lightning Location System in the North Caucasus,” Meteorol. Gidrol., No. 1 (2013) [Russ. Meteorol. Hydrol., No. 1, 38 (2013)].Google Scholar
  3. 3.
    S. M. Gal’perin, Yu. P. Mikhailovskii, V. N. Stasenko, and V. I. Frolov, “Comparison of Air borne Data on Electric Field Strength of Convective Clouds with Their Radar Characteristics,” Trudy NITs DZA (GGO), Prikladnaya Meteorol., No. 6 (2005) [in Russian].Google Scholar
  4. 4.
    Yu. A. Dovgalyuk, N. E. Veremei, and A. A. Sin’kevich, The Use of One-and-half-dimensional Model for Solving Fundamental and Applied Problems of the Cloud Physics, 2nd ed. (Mobi Dik, Saint Petersburg, 2013) [in Russian].Google Scholar
  5. 5.
    Yu. A. Dovgalyuk, A. D. Egorov, E. N. Stankova, A. A. Sin’kevich, V. D. Stepanenko, and L. I. Shumakov, “Studying the Pro cess of Trans formation of a Cumulus Congestus Cloud into a Cumulonimbus Cloud after the Seeding,” in Weather Modification (Gidrometeoizdat, Leningrad, 1990) [in Russian].Google Scholar
  6. 6.
    E. V. Dorofeev, M. V. L’vova, I. B. Popov, and I. A. Tarabukin, “Application of Cumulonimbus Cloud Identification Criteria to the Algorithms of Secondary Processing of Radar Data Derived with New-generation Weather Radars,” Trudy GGO, No. 572 (2014) [in Russian].Google Scholar
  7. 7.
    I. M. Imyanitov, E. V. Chubarina, and Ya. M. Shvarts, Cloud Electricity (Gidrometeoizdat, Leningrad, 1971) [in Russian].Google Scholar
  8. 8.
    T. W. Krauss, A. A. Sinkevich, N. E. Veremei, Yu. A. Dovgalyuk, V. S. Makitov, and V. D. Stepanenko, “Complex Study of Characteristics of a Cb Cloud Developing over the Arabian Peninsula under High Dew Point Deficit in the Atmosphere. Part 1. Field Observations and Numerical Modeling,” Meteorol. Gidrol., No. 2 (2011) [Russ. Meteorol. Hydrol., No. 2, 36 (2011)].Google Scholar
  9. 9.
    T. W. Krauss, A. A. Sin’kevich, and A. S. Ghulam, “High-intensity Precipitation Measurement Using Remote Methods,” Meteorol. Gidrol., No. 7 (2012) [Russ. Meteorol. Hydrol., No. 7, 37 (2012)].Google Scholar
  10. 10.
    T. W. Krauss, A. A. Sin’kevich, and A. S. Ghulam, “Radar Investigations of Cloud Merger,” Meteorol. Gidrol., No. 9 (2012) [Russ. Meteorol. Hydrol., No. 9, 37 (2012)].Google Scholar
  11. 11.
    Yu. P. Mikhailovskii, “Methods and Results of Air borne Seeding Impact on Convective Cloud Electrification,” Trudy GGO, No. 577 (2015) [in Russian].Google Scholar
  12. 12.
    Yu. P. Mikhailovskii, “On Verification of Numerical Models of Convective Clouds Based on Air borne Data on Electrification,” Trudy GGO, No. 580 (2016) [in Russian].Google Scholar
  13. 13.
    Yu. P. Mikhailovskii, S. M. Gal’perin, L. V. Kashleva, and V. D. Stepanenko, “Electrification of Convective Clouds in Case of Natural Development and Seeding,” in Air craft Studies. Problems of Atmospheric Electricity (Gidrometeoizdat, Leningrad, 1990) [in Russian].Google Scholar
  14. 14.
    Yu. F. Ponomarev and A. A. Sin’kevich, “Electrification of Convective Clouds over Northwestern Russia,” Meteorol. Gidrol., No. 6 (1997) [Russ. Meteorol. Hydrol., No. 6 (1997)].Google Scholar
  15. 15.
    A. A. Sin’kevich, Con vective Clouds in North western Russia (Gidrometeoizdat, Leningrad, 1990) [in Russian].Google Scholar
  16. 16.
    A. A. Sin’kevich, T. W. Krauss, V. D. Stepanenko, Yu. A. Dovgalyuk, N. E. Veremei, A. B. Kurov, and L. V. Pivovarova, “Study of Dynamics of the Cumulonimbus An vil of Large Vertical Extent,” Meteorol. Gidrol., No. 12 (2009) [Russ. Meteorol. Hydrol., No. 12, 34 (2009)].Google Scholar
  17. 17.
    A. A. Sin’kevich, Yu. P. Mikhailovskii, Yu. A. Dovgalyuk, N. E. Veremei, E. V. Bogdanov, A. Kh. Adzhiev, A. M. Malkarova, and A. M. Abshaev, “In vestigations of the Development of Thunderstorm with Hail, Part 1: Cloud Development and Formation of Electric Dis charges,” Meteorol. Gidrol., No. 9 (2016) [Russ. Meteorol. Hydrol., No. 9, 41 (2016)].Google Scholar
  18. 18.
    A. V. Snegurov and V. S. Snegurov, “Experimental Lightning Location System,” Trudy GGO, No. 567 (2012) [in Russian].Google Scholar
  19. 19.
    V. D. Stepanenko and S. M. Gal’perin, Radiotechnical Methods of Thunderstorm Investigation (Gidrometeoizdat, Leningrad, 1983) [in Russian].Google Scholar
  20. 20.
    S. M. Shmeter, Physics of Convective Clouds (Gidrometeoizdat, Leningrad, 1972) [in Russian].Google Scholar
  21. 21.
    R. V. Calheiros and I. Zawadzki, “Reflectivity-rain Rate Relationship for Radar Hydrology in Brazil,” J. Climate Appl. Meteorol., 26 (1987).Google Scholar
  22. 22.
    S. A. Changnon, “Effects of Urban Areas and Echo Merging on Radar Echo Behavior,” J. Appl. Meteorol., 15 (1976).Google Scholar
  23. 23.
    F. Danhong and G. A. Xueliang, “Cloud-resolving Study on the Role of Cumulus Merger in MCS with Heavy Precipitation,” Adv. Atmos. Sci., No. 6, 23 (2006).Google Scholar
  24. 24.
    W. Deierling and W. A. Petersen, “Total Lightning Activity as an Indicator of Updraft Characteristics,” J. Geophys. Res., No. D16, 113 (2008).Google Scholar
  25. 25.
    M. Fujiwara, “An An alytical In vestigation of the Variability of Size Distribu tion of Rain Drops in Convective Storms,” in Proceedings of the 8th Weather Radar Conference (Amer. Meteorol. Soc., Boston, 1960).Google Scholar
  26. 26.
    Y. L. Kogan and A. Shapiro, “The Simulation of a Convective Cloud in a 3D Model with Explicit Microphysics. Part II: Dynamical and Microphysical Aspects of Cloud Merger,” J. Atmos. Sci., 53 (1996).Google Scholar
  27. 27.
    W. Krajewski, “Cokriging Radar-rainfall and Rain-gage Data,” J. Geophys. Res., 92 (1987).Google Scholar
  28. 28.
    T. W. Krauss, A. A. Sinkevich, and A. S. Ghulam, “Effects of Feeder Cloud Merging on Storm Development in Saudi Arabia,” JKAU: Met., Env. & Arid Land Agric. Sci., No. 2, 22 (2011).Google Scholar
  29. 29.
    J. S. Mar shall and W. McK. Palmer, “The Distribution of Rain drops with Size,” J. Meteorol., 5 (1948).Google Scholar
  30. 30.
    D. Pozo, I. Borrajero, J. C. Marin, and G. B. Raga, “A Numerical Study of Cell Merger over Cuba, Part II: Sensitivity to Environmental Conditions,” Ann. Geophys., 24 (2006).Google Scholar
  31. 31.
    O. P. Prat and A. P. Barros, “Exploring the Tran sient Behavior of Z–R Relationships: Implications for Radar Rainfall Estimation,” J. Appl. Meteorol. Climatol., 48 (2009).Google Scholar
  32. 32.
    J. Simpson, N. E. Westcott, R. J. Clerman, and R. A. Pielke, “On Cumulus Mergers,” Arch. Meteorol. Geophys. Bioklim. A, 29 (1980).Google Scholar
  33. 33.
    A. A. Sinkevich and T. W. Krauss, “Changes in Thunderstorm Characteristics due to Feeder Cloud Merging,” J. Atmos. Res., 142 (2014).Google Scholar
  34. 34.
    E. C. Ware, Corrections to Radar-estimated Precipitation Using Observed Rain Gauge Data, M.S. Thesis (Cornell University, 2005).Google Scholar
  35. 35.
    N. E. Westcott, “A Historical Perspective on Cloud Mergers,” Bull. Amer. Meteorol. Soc., 65 (1984).Google Scholar
  36. 36.
    N. E. Westcott, “Merging of Convective Clouds: Cloud Initiation, Bridging, and Subsequent Growth,” Mon. Wea. Rev., 122 (1994).Google Scholar
  37. 37.
    V. G. Wiggert, J. Lockett, and S. S. Ostlund, “Rainshower Growth Histories and Variations with Wind Speed, Echo Motion, Location and Merger Status,” Mon. Wea. Rev., 109 (1981).Google Scholar
  38. 38.
    J. Wong, M. C. Barth, and D. Noone, “Evaluating a Lightning Parameterization Based on Cloud-top Height for Mesoscale Numerical Model Simulations,” Geosci. Model Dev., 6 (2013).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. A. Sin’kevich
    • 1
    Email author
  • V. B. Popov
    • 1
  • I. A. Tarabukin
    • 1
  • E. V. Dorofeev
    • 1
  • Yu. A. Dovgalyuk
    • 1
  • N. E. Veremei
    • 1
  • Yu. P. Mikhailovskii
    • 1
  • V. S. Snegurov
    • 1
  • A. V. Snegurov
    • 1
  1. 1.Voeikov Main Geophysical ObservatorySt. PetersburgRussia

Personalised recommendations