Russian Meteorology and Hydrology

, Volume 43, Issue 6, pp 366–371 | Cite as

Reconstruction of Climate of the Eemian Interglacial Using an Earth System Model. Part 2. The Response of the Greenland Ice Sheet to Climate Change

  • O. O. Rybak
  • E. M. Volodin
  • P. A. Morozova


In the framework of the study of the Eemian interglacial we consider the role of the Greenland ice sheet in the rise of the mean level of the World Ocean. Its contribution estimated as 2 m confirms the newest estimates based on the model results and on the proxy data analysis. In the beginning of the Eemian interglacial (earlier than 126 thousand years ago) mass lost occurs through the marine margin of the sheet. During the next five millennia, the negative surface mass balance plays the leading role. Taking into account the contribution of Greenland ice sheet, ocean thermal expansion, and the melting of mountain glaciers and ice caps, it is very probable that the West Antarctic ice sheet was the main source of the global sea level growth equal to 6–9 m the compared to the present.


Climate mathematical model glacial–interglacial cycles Eemian interglacial Greenland ice sheet the World Ocean level 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. O. Rybak, E. M. Volodin, and P. A. Morozova, “Reconstruction of Climate of the Eemian Interglacial Using an Earth System Model. Part 1. Set–up of Numerical Experiments and Model Fields of Surface Air Temperature and Precipitation Sums,” Meteorol. Gidrol., No. 6 (2018) [Russ. Meteorol. Hydrol., No. 6, 43 (2018)].Google Scholar
  2. 2.
    O. O. Rybak, E. M. Volodin, A. P. Nevecherya, and P. A. Morozova, “The Use of Energy Moisture Balanced Model to Include Cryosphere Component to the Climate Model. Part II. Model Mass Balance on the GrIS Surface,” Meteolᅳol. Gidrol., No. 6 (2016) [Russ. Meteorol. Hydrol., No. 6, 41 (2016)].Google Scholar
  3. 3.
    O. O. Rybak and F. Hobrechts, “Greenland Ice Sheet on the Peak of Warming of the Penultimate Interglacial,” Led i Sneg, No. 2 (2014) [in Russian].Google Scholar
  4. 4.
    J. L. Bamber, R. E. M. Riva, B. L. A. Vermeersen, and A. M. LeBrocq, “Reassessment of the Potential Sea–Level Rise from a Collapse of the West Antarctic Ice Sheet,” Science, 324 (2009).Google Scholar
  5. 5.
    A. Born and K. H. Nisancioglu, “Melting of Northern Greenland during the Last Interglaciation,” The Cryosphere, 6 (2012).Google Scholar
  6. 6.
    J. Chappell and N. J. Shackleton, “Oxygen Isotopes and Sea Level,” Nature, 324 (1986).Google Scholar
  7. 7.
    A. Dutton and K. Lambeck, “Ice Volume and Sea Level during the Last Interglacial,” Science, 337 (2012).Google Scholar
  8. 8.
    P. J. Hearty, J. T. Hollin, A. C. Neumann, et al., “Global Sea–level Fluctuations during the Last Interglacial (MIS 5e),” Quat. Sci. Rev., 26 (2007).Google Scholar
  9. 9.
    M. M. Helsen, W. J. van de Berg, R. S. W. van de Wal, et al., “Coupled Regional Climate–ice Sheet Simulation Shows Limited Greenland Ice Loss during the Eemian,” Climate of the Past, 9 (2013).Google Scholar
  10. 10.
    I. M. Howat, Y. Ahn, I. Joughin, et al., “Mass Balance of Greenland's Three Largest Outlet Glaciers, 2000–2010,” Geophys. Res. Lett., 38 (2011).Google Scholar
  11. 11.
    I. M. Howat, I. Joughin, and T. A. Scambos, “Rapid Changes in Ice Discharge from Greenland Outlet Glaciers,” Science, 315 (2007).Google Scholar
  12. 12.
    R. E. Kopp, F. J. Simons, J. X. Mitrovica, et al., “Probabilistic Assessment of Sea Level during the Last Interglacial Stage,” Nature, 462 (2009).Google Scholar
  13. 13.
    G. J. Kukla, M. L. Bender, J.–L. de Beaulieu, et al., “Last Interglacial Climates,” Quat. Rev., 58 (2002).Google Scholar
  14. 14.
    L. E. Lisiecki and M. E. Raymo, “A Pliocene–Pleistocene Stack of 57 Globally Distributed Benthic 518O Records,” Paleoceanography, 20 (2005).Google Scholar
  15. 15.
    N. P. McCay, J. T. Overpeck, and B. L. Otto–Bliesner, “The Role of Ocean Thermal Expansion in Last Interglacial Sea Level Rise,” Geophys. Res. Lett., 38 (2011).Google Scholar
  16. 16.
    J. H. Mercer, “West Antarctic Ice Sheet and CO2 Greenhouse Effect: A Threat of Disaster,” Nature, 271 (1978).Google Scholar
  17. 17.
    I. Nikolova, Q. Yin, A. Berger, et al., “The Last Interglacial (Eemian) Climate Simulated by LOVECLIM and CCSM3,” Climate of the Past, 9 (2013).Google Scholar
  18. 18.
    M. J. O'Leary, P. J. Hearty, W. G. Thompson, et al., “Ice Sheet Collapse Following a Prolonged Period of Stable Sea Level during the Last Interglacial,” Nature Geoscience, 6 (2013).Google Scholar
  19. 19.
    V. Radic and R. Hock, “Regional and Global Volumes of Glaciers Derived from Statistical Upscaling of Glacier Inventory Data,” J. Geophys. Res., 115 (2006).Google Scholar
  20. 20.
    A. Robinson, R. Calov, and A. Ganopolski, “An Efficient Regional Energy–moisture Balance Model for Simulation of the Greenland Ice Sheet Response to Climate Change,” The Cryosphere, 4 (2010).Google Scholar
  21. 21.
    J. Sutter, P. Gierz, K. Grosfeld, et al., “Ocean Temperature Thresholds for Last Interglacial West Antarctic Ice Sheet Collapse,” Geophys. Res. Lett., 43 (2016).Google Scholar
  22. 22.
    M. van den Broeke, J. Bamber, J. Ettema, et al., “Partitioning Recent Greentand Mass Loss,” Science, 326 (2009).Google Scholar
  23. 23.
    D. G. Vaughan and J. R. Spouge, “Risk Estimation of Col l apse of the West Antarctic Ice Sheet,” Climatic Change, 52 (2002).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • O. O. Rybak
    • 1
    • 2
  • E. M. Volodin
    • 1
  • P. A. Morozova
    • 1
    • 3
  1. 1.Institute of Numerical Mathematics of RASMoscowRussia
  2. 2.Sochi Research Center of RASSochiRussia
  3. 3.Institute of Geography of RASMoscowRussia

Personalised recommendations