Advertisement

Russian Meteorology and Hydrology

, Volume 43, Issue 6, pp 357–365 | Cite as

Reconstruction of Climate of the Eemian Interglacial Using an Earth System Model. Part 1. Set–up of Numerical Experiments and Model Fields of Surface Air Temperature and Precipitation Sums

  • O. O. Rybak
  • E. M. Volodin
  • P. A. Morozova
Article

Abstract

The paper analyzes the results ofthe numerical experiment aiming at the reconstruction of climate ofthe penultimate (Eemian) interglacial (last interglacial, LIG) obtained using the Earth system model developed in the Institute of Numerical Mathematics of RAS. Orbital parameters were set with the periodicity of one thousand years and were further interpolated with the time step of 100 years. Assuming that during the LIG the concentrations of greenhouse gases were not very much different from the preindustrial values, this potential forcing was neglected. The climatic block of the ESM was called every 100 model years to foltow changes in orbital forcmg. The sub–models of ice sheets were asynchronously coupled to the sub–models of the atmosphere and the ocean with the ratio of model years as 100 to 1. Obtained anomaly (Eemian versus preindustrial) fields of surface air temperature generally correspond to the results of the earlier studies. Changes in the structure of the global atmospheric circulation resulted in the transformation ofthe precipitation field in some world regions. In particular, precipitation growth in North Africa was the reason for the radical change of landscapes.

Keywords

Climate palaeoclimate mathematical model glacial–interglacial cycles Eemian interglacial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. M. Volodin and N. A. Diansky, “Response of a Coupled Model of the Atmosphere and the Ocean on Increase of Carbon Dyoxide Concentration,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 2, 39 (2003) [Izv., Atmos. Oceanic Phys., No. 2, 39 (2003)].Google Scholar
  2. 2.
    N. A. Diansky and E. M. Volodin, “Simulation of Present–day Climate with a Coupled Atmosphere–Ocean General Circulation Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 38 (2002) [Izv., Atmos. Oceanic Phys., No. 6, 38 (2002)].Google Scholar
  3. 3.
    O. O. Rybak and E. M. Volodin, “Applying the Energy–and Wat er Balance Model for Incorpolation of the Cryospheric Component into a Climate Model. Part I. Description of the Model and Computed Climatic Fields of Surface Air Temperature and Precipitation Rate,” Meteorol. Gidrol., No. 11 (2015) [Russ. Meteorol. Hydrol., No. 11, 40 (2015)].Google Scholar
  4. 4.
    O. O. Rybak, E. M. Volodin, A. P. Nevecherja, and P. A. Morozova, “Applying the Energy–and Water Balance Model for Incorporation of the Cryospheric Component into a Climate Model. Part II. Modeled Mass Balance on the Greenland Ice Sheet Surface,” Meteorol. Gidrol., No. 6 (2016) [Russ. Meteorol. Hydrol., No. 6, 41 (2016)].Google Scholar
  5. 5.
    O. O. Rybak, E. M. Volodin, A. P. Nevecherya, P. A. Morozova, and M. M. Kaminskaya, “Calculation of Mass Discharge of the Greenland Ice Sheet in the Earth System Model,” Led i Sneg, No. 3 (2016) [in Russian].Google Scholar
  6. 6.
    P. Bakker, E. J. Stone, S. Charbit, et al., “Last Interglacial Temperature Evolution—A Model Intercomparison,” Climate of the Past, 9 (2013).Google Scholar
  7. 7.
    A. Berger, “Long–term Variations of Daily Insolation and Quaternary Climatic Changes,” J. Atmos. Sci., 35 (1978).Google Scholar
  8. 8.
    P. U. Clark and P. Huybers, “Interglacial and Future Sea Level,” Nature, 462 (2009).Google Scholar
  9. 9.
    B. A. S. Davis and S. Brewer, “Orbital Forcing and Role of the Latitudinal Insolation/Temperature Gradient,” Climate Dynamics, 32 (2009).Google Scholar
  10. 10.
    EPICA community members, “Eight Glacial Cycles from an Antarctic Ice Core,” Nature, 429 (2004).Google Scholar
  11. 11.
    EPICA community members, “One–to–one Interhemispheric Coupling of Polar Climate Variability during the Last Glacial,” Nature, 444 (2006).Google Scholar
  12. 12.
    S. C. Fritz, P. A. Baker, G. O. Seltzer, et al., “Quaternary Glaciation and Hydrologic Variation in the South American Tropics as Reconstructed from Lake Titicaca Drilling Project,” Quat. Res., 68 (2007).Google Scholar
  13. 13.
    J. G. Fyke, A. J. Weaver, D. Pollard, et al., “A New Coupled Ice Sheet–climate Model: Description and Sensitivity to Model Phys ÍCS under Eemian, Last Glacial MaxMum, Late Holocene and Modern Climate Conditions,” Geosci. Model Development, 4 (2011).Google Scholar
  14. 14.
    M. M. Helsen, W. J. van de Berg, R. S. W. van de Wal, et al., “Coupled Regional Climate–Ice Sheet Simulation Shows Limited Greenland Ice Loss during the Eemian,” Climate of the Past, 9 (2013).Google Scholar
  15. 15.
    M. Herold and G. Lohmann, “Eemian Tropical and Subtropical African Moisture Transport: An Isotope Modelling Study,” Climate Dynamics, 33 (2009).Google Scholar
  16. 16.
    P. Huybrechts, “Sea–level Changes at the LGM from Ice–dynamic Reconstructions of the Greenland and Antarctic Ice Sheets during the Glacial Cycles,” Quat. Sci. Rev., 21 (2002).Google Scholar
  17. 17.
    J. Jouzel, V. Masson–Delmotte, O. Cattani, et al., “Orbital and Millenial Antarctic Climate Variability over the Past 800,000 Years,” Science, 317 (2007).Google Scholar
  18. 18.
    E. B. Karabanov, A. A. Propenko, D. F. Williams, et al., “Evidence for Mid–Eemian Cooling in Continental Climatic Record from Lake Baikal,” J. Paleolimnology, 23 (2000).Google Scholar
  19. 19.
    F. Kaspar and U. Cubasch, “Simulations of the Eemian Interglacial and the Subsequent Glacial Inception with a Coupled Ocean–Atmosphere General Circulation Model,” Develop. Quat. Sci., 7 (2007).Google Scholar
  20. 20.
    J. M. Kieniewicz and J. R. Smith, “Paleoenvironmental Reconstruction and Water Balance of a Mid–Pleistocene Pluvial Lake, Dakhleh Oasis, Egypt,” Geol. Soc. Amer. Bull., 121 (2009).Google Scholar
  21. 21.
    K. Kowalski, Z. Bochenski, M. Mlynarski, et al., “A Last Interglacial Fauna from the Eastern Sahara,” Quat. Res., 32 (1989).Google Scholar
  22. 22.
    G. J. Kukla, M. L. Bender, J.–L. de Beaulieu, et al., “Last Interglacial Climates,” Quat. Rev., 58 (2002).Google Scholar
  23. 23.
    G. J. Kukla, J. F. McManus, D.–D. Rousseau, and I. Chuine, “How Long and How Stable Was the Last Interglacial,” Quat. Rev., 6 (1997).Google Scholar
  24. 24.
    J. C. Larrasoana, A. P. Roberts, and E. J. Rohling, “Dynamics of Green Sahara Periods and Their Role in Hominin Evolution,” PLoS ONE, No. 10, 8 (2013).Google Scholar
  25. 25.
    D. J. Lunt, A. Abe–Ouchi, P. Bakker, et al., “A Multi–model Assessment of Last Interglacial Temperatures,” Climate of the Past, 9 (2013).Google Scholar
  26. 26.
    N. P. McCay, J. T. Overpeck, and B. L. Otto–Bliesner, “The Role of Ocean Thermal Expansion in Last Interglacial Sea Level Rise,” Geophys. Res. Lett., 38 (2011).Google Scholar
  27. 27.
    M. Montoya, H. von Storch, and T. J. Crowley, “Climate Simulation for 125 kyr BP with a Coupled Ocean–atmosphere General Circulation Model,” J. Climate, 13 (2000).Google Scholar
  28. 28.
    H. Motoyama, “The Second Deep Ice Coring Project at Dome Fuji, Antarctica,” Scientific Drilling, 5 (2007).Google Scholar
  29. 29.
    NEEM community members, “Eemian Interglacial Reconstructed from a Greenland Folded Ice Core,” Nature, 493 (2013).Google Scholar
  30. 30.
    I. Nikolova, Q. Yin, A. Berger, et al. “The Last Interglacial (Eemian) Climate Simulated by LOVECLIM and CCSM3,” Climate of the Past, 9 (2013).Google Scholar
  31. 31.
    B. L. Otto–Bliesner, S. J. Marshall, J. T. Overpeck, et al., “Simulating Arctic Climate Warmth and Icefield Retreat in the Last Interglaciation,” Science, 311 (2006).Google Scholar
  32. 32.
    B. L. Otto–Bliesner, N. Rosenbloom, E. Stone, et al., “How Warm Was the Last Interglacial? New Model Data Comparisons,” Phil. Trans. Roy. Soc., Ser. A., 371 (2016).Google Scholar
  33. 33.
    J. R. Petit, J. Jouzel, D. Raynaud, et al., “Climate and Atmospheric History of the Past 420,000 Years from the Vostok Ice Core, Antarctica,” Nature, 399 (1999).Google Scholar
  34. 34.
    M. Pfeiffer and G. Lohmann, “Greentand Ice Sheet Influence on Last Interglacial Climate: Global Sensitivity Studies Performed with an Atmosphere–ocean General Circulation Model,” Climate of the Past, 12 (2016).Google Scholar
  35. 35.
    W. L. Prell and J. E. Kutzbach, “Monsoon Variability over the Past 150,000 Years,” J. Geophys. Res., 92 (1987).Google Scholar
  36. 36.
    A. Robinson, R. Calov, and A. Ganopolski, “An Efficient Regional Energy–moisture Balance Model for Simulation of the Greenland Ice Sheet Response to Climate Change,” The Cryosphere, 4 (2010).Google Scholar
  37. 37.
    C. S. M. Turney and R. T. Jones, “Does the Agulhas Current Amplify Global Temperatures during Super–interglacials,” J. Quat. Sci., 25 (2010).Google Scholar
  38. 38.
    J.–X. Zhao, Q. Xia, and K. D. Collerson, “Timing and Duration of the Last Interglacial Inferred from High Resolution U–series Chronology of Statagmite Growth in Southern Hemisphere,” Earth and Planet. Sci. Lett., 184 (2001).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • O. O. Rybak
    • 1
    • 2
  • E. M. Volodin
    • 1
  • P. A. Morozova
    • 1
    • 3
  1. 1.Institute of Numerical Mathematics of RASMoscowRussia
  2. 2.Sochi Research Center of RASSochiRussia
  3. 3.Institute of Geography of RASMoscowRussia

Personalised recommendations