Advertisement

Russian Meteorology and Hydrology

, Volume 43, Issue 5, pp 295–301 | Cite as

A Complex Approach for the Estimation of Carbonaceous Emissions from Wildfires in Siberia

  • A. V. Panov
  • A. S. Prokushkin
  • A. V. Bryukhanov
  • M. A. Korets
  • E. I. Ponomarev
  • N. V. Sidenko
  • G. K. Zrazhevskaya
  • A. V. Timokhina
  • M. O. Andreae
Article
  • 38 Downloads

Abstract

A complex approach is considered to the estimation of emissions of carbon gases formed during wildfires in the middle taiga subzone in the Yenisei region of Siberia. Based on the large-scale Siberian wildfires in 2012, the relative contribution of emissions to the values of background concentration of carbon gases (CO2, CH4, CO) in the atmospheric boundary layer measured at the 300-m ZOTTO tall tower is assessed. The degree of ecosystem damage caused by wildfires is estimated depending on their intensity and combustion phase (flame or flameless). Emission factors are calculated for the major carbon gases in wildfire plumes which are the key component for assessing wildfire emissions to the atmosphere.

Keywords

Boreal forests Siberia wildfires carbon gases ZOTTO 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Belov, Vegetation in Western Siberia and Its Mapping (Nauka, Moscow, 1984) [in Russian].Google Scholar
  2. 2.
    F. Z. Glebov, Bogs and Bogged Forests in the Forest Zone of the Yenisei Left Bank Region (Nauka, Moscow, 1969) [in Russian].Google Scholar
  3. 3.
    V. A. Ivanov, G. A Ivanova, and S. A. Moskal'chenko, Manual on Wildfire Fighting, UNDP/ICI Project “Extension of Protected Areas Network for the Conservation of the Altai-Sayan Ecoregion” (Krasnoyarsk, 2011) [in Russian].Google Scholar
  4. 4.
    G. A. Ivanova, V. A. Ivanov, E. A. Kukavskaya, S. G. Conard, D. J. McRae, “Effect of Fires on Carbon Emission in Pine Forests of Middle Siberia,” Sibirskii Ekologicheskii Zhurnal, No. 6 (2007) [in Russian].Google Scholar
  5. 5.
    G. A. Ivanova, S. G. Conard, D. J. McRae, I. N. Bezkorovainaya, A. V. Bogorodskaya, S. V. Zhila, V. A. Ivanov, A. V. Ivanov, N. M. Kovaleva, E. N. Krasnoshchekova, E. A. Kukavskaya, D. N. Oreshkov, V. D. Perevoznikova, Yu. N. Samsonov, N. D. Sorokin, P. A. Tarasov, P. A. Tsvetkov, and A. S. Shishkin, Fire Impact on the Components of Siberian Middle Taiga Pine Forest Ecosystem (Nauka, Novosibirsk, 2014) [in Russian].Google Scholar
  6. 6.
    G. N. Korovin and N. A. Andreev, Aviation Forest Protection (Agropromizdat, Moscow, 1988) [in Russian].Google Scholar
  7. 7.
    A. V. Panov, J. Heintzenberg, W. Birmili, R. Otto, X. Chi, G. K. Zrazhevskaya, A. V. Timokhina, S. V. Verkhovets, M. Andrea, and A. A. Onuchin, “Sources, Seasonal Variability, and Trajectories of Atmospheric Aerosols over Central Siberian Forest Ecosystems,” Dokl. Akad. Nauk., No. 5, 441 (2011) [Dokl. Earth Sci., No. 2, 441 (2011)].Google Scholar
  8. 8.
    A. V. Panov, J. Heintzenberg, W. Birmili, P. Seifert, X. Chi, A. V. Timokhina, and M. O. Andreae, “Spatial Distribution of Atmospheric Aerosols over the Territory of Eurasia in Middle and High Latitudes,” Geografiya i Prirodnye Resursy, No. 1 (2015) [in Russian].Google Scholar
  9. 9.
    N. S. Smirnov, V. N. Korotkov, and A. A. Romanovskaya, “Black Carbon Emissions from Wildfires on Forest Lands of the Russian Federation in 2007–2012,” Meteorol. Gidrol., No. 7 (2015) [Russ. Meteorol. Hydrol., No. 7, 40 (2015)].Google Scholar
  10. 10.
    P. A. Tsvetkov and L. V. Buryak, “Investigation of Fire Nature in the Forests of Siberia,” Sibirskii Lesnoi Zhurnal, No. 3 (2014) [in Russian].Google Scholar
  11. 11.
    M. O. Andreae and P. Merlet, “Emission of Trace Gases and Aerosols from Biomass Burning,” Glob. Biogeochem. Cycl., 15 (2001).Google Scholar
  12. 12.
    L. W. Chen, H. Moosmuller, W. P. Arnott, J. C. Chow, J. G. Watson, R. A. Susot, R. E. Babbitt, C. E. Wold, E. N. Lincoln, and W. M. Hao, “Emissions from Laboratory Combustion of Wildland Fuels: Emissions Factors and Source Profiles,” Environ. Sci. Technol., 41 (2007).Google Scholar
  13. 13.
    X. Chi, J. Winderlich, J. C. Mayer, A. V. Panov, M. Heimann, W. Birmili, J. Heintzenberg, Y. Cheng, and M. O. Andreae, “Long-term Measurements of Aerosol and Carbon Monoxide at the ZOTTO Tall Tower to Characterize Polluted and Pristine Air in the Siberian Taiga,” Atmos. Chem. Phys., 13 (2013).Google Scholar
  14. 14.
    A. E. Cocke, P. Z. Fule, and J. E. Crouse, “Comparison of Burn Severity Assessments Using Differenced Normalized Burn Ratio and Ground Data,” Int. J. Wildland Fire, 14 (2005).Google Scholar
  15. 15.
    R. Draxler and G. Rolph, “HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model Access via NOAA ARL READY, NOAA Air Resources Laboratory; https://doi.org/ready.arl.noaa.gov/HYSPLIT.php.
  16. 16.
    M. Heimann, E.-D. Schulze, J. Winderlich, M. O. Andreae, X. Chi, C. Gerbig, O. Kolle, K. Kubler, J. Lavric, E. Mikhailov, A. Panov, S. Park, C. Rodenbeck, A. Skorochod, “The Zotino Tall Tower Observatory (ZOTTO): Quantifying Large Biogeochemical Changes in Central Siberia,” Nova Acta Leopoldina, No. 399 (2014).Google Scholar
  17. 17.
    J. Heintzenberg, W. Birmili, R. Otto, M. O. Andreae, J.-C. Mayer, X. Chi, and A. Panov, “Aerosol Particle Number Size Distributions and Particulate Light Absorption at the ZOTTO Tall Tower (Siberia), 2006–2009,” Atmos. Chem. Phys., 11 (2011).Google Scholar
  18. 18.
    J. Heintzenberg, W. Birmili, P. Seifert, A. Panov, X. Chi, and M. O. Andreae, “Mapping the Aerosol over Eurasia from the Zotino Tall Tower,” Tellus B, 65 (2013).Google Scholar
  19. 19.
    E. S. Kasischke, N. L. Christensen, and B. J. Stocks, “Fire, Global Warming, and the Carbon Balance of Boreal Forests,” Ecol. Appl., No. 2, 5 (1995).Google Scholar
  20. 20.
    Y. J. Kaufman, R. G. Kleidman, and M. D. King, “SCAR-B Fires in the Tropics: Properties and Remote Sensing from EOS-MODIS,” J. Geophys. Res., 103 (1998).Google Scholar
  21. 21.
    C. H. Key and N. C. Benson, Landscape Assessment (LA) Sampling and Analysis Methods, USDA Forest Service Gen. Tech. Rep. (2006).Google Scholar
  22. 22.
    E. A. Kukavskaya, A. J. Soja, A. P. Petkov, E. I. Ponomarev, G. A. Ivanova, and S. G. Conard, “Fire Emissions Estimates in Siberia: Evaluation of Uncertainties in Area Burned, Land Cover, and Fuel Consumption,” Can. J. Forest Res., 43 (2013).Google Scholar
  23. 23.
    J. Lavric, M. Heimann, C. Gerbig, J. Winderlich, E.-D. Schulze, M. O. Andreae, A. A. Onuchin, and A. V. Panov, “A Look Up at the Zotino Tall Tower Observatory,” Meteorol. Techn. Intern., Sept. 2011.Google Scholar
  24. 24.
    A. J. Soja, N. M. Tchebakova, N. French, M. D. Flannigan, H. H. Shugart, B. J. Stocks, A. I. Sukhinin, E. I. Parfenova, S. F. Chapin III, and P. W. Stackhouse, “Climate-induced Boreal Forest Change: Predictions versus Current Observations,” Glob. Planet. Change, 56 (2007).Google Scholar
  25. 25.
    C. Wiedinmyer, B. Quayle, C. Geron, A. Belote, D. McKenzie, X. Zhang, S. O'Neill, K. K. Wynne, “Estimating Emissions from Fires in North America for Air Quality Modeling,” Atmos. Environ., No. 19, 40 (2006).Google Scholar
  26. 26.
    J. Winderlich, H. Chen, C. Gerbig, T. Seifert, O. Kolle, J. V. Lavric, C. Kaiser, A. Hoefer, and M. Heimann, “Continuous Low-maintenance CO2/CH4/H2O Measurements at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia,” Atmos. Meas. Tech., No. 4, 3 (2010).Google Scholar
  27. 27.
    S. P. Urbanski, W. M. Hao, and S. Baker, “Chemtcal Composition of Wildland Fire Emissions,” in Wildland Fires and Air Pollution (Elsevier, the Netherlands, 2009).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. V. Panov
    • 1
  • A. S. Prokushkin
    • 1
  • A. V. Bryukhanov
    • 1
  • M. A. Korets
    • 1
  • E. I. Ponomarev
    • 1
  • N. V. Sidenko
    • 1
  • G. K. Zrazhevskaya
    • 1
  • A. V. Timokhina
    • 1
  • M. O. Andreae
    • 2
  1. 1.Sukachev Institute of Forest, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  2. 2.Max Planck Institute for BiogeochemistryJenaGermany

Personalised recommendations