Russian Meteorology and Hydrology

, Volume 43, Issue 5, pp 288–294 | Cite as

Interannual Variability of Atmospheric CO2 Concentrations over Central Siberia from ZOTTO Data for 2009–2015

  • A. V. Timokhina
  • A. S. Prokushkin
  • A. V. Panov
  • R. A. Kolosov
  • N. V. Sidenko
  • J. Lavric
  • M. Heimann


The interannual variations in the characteristics of the seasonal cycle (annual and seasonal amplitudes, winter emission, dates of annual minimum and maximum, and phase) and in the growth rate of atmospheric carbon dioxide concentration over Central Siberia are analyzed for the period from May 2009 to January 2016. The results are based on the continuous monitoring of CO2 concentration at the Zotino Tall Tower Observatory (ZOTTO, It is found that the seasonal amplitude of CO2 concentration in the atmo spheric surface layer over Western Siberia is 26.4 ± 0.8 μmol/mol (no long-term trend toward its increase was revealed), the annual mean growth rate of CO2 is 2.34 μmol/mol per year, its variations range from 1 to 4 μmol/mol per year.


Atmospheric CO2 concentration ZOTTO seasonal variation growth rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. I. Krekov, A. V. Fofonov, S. V. Babchenko, G. Inoue, T. Machida, Sh. Maksutov, M. Sasakawa, and K. Shimoyama, “The Dynamics in Vertical Distribution of Greenhouse Gases in the Atmosphere,” Optika Atmosfery i Okeana, No. 12 (2012) [in Russian].Google Scholar
  2. 2.
    WMO Greenhouse Gas Bulletin, No. 11 (2015) [in Russian].Google Scholar
  3. 3.
    Review of Environmental Pollution in the Russian Federation in 2015 (Roshydromet, Moscow, 2016) [in Russian].Google Scholar
  4. 4.
    A. V. Timokhina, A. S. Prokushkin, A. A. Onuchin, A. V. Panov, G. B. Kofman, and M. Heimann, “Variability of Ground CO2 Conceniraiion in the Middle Taiga Subzone of the Yenisei Region of Siberia,” Ekologiya, No. 2 (2015) [Russ. J. Ecol., No. 2, 46 (2015)].Google Scholar
  5. 5.
    A. V. Timokhina, A. S. Prokushkin, A. A. Onuchin, A. V. Panov, G. B. Kofman, S. V. Verkhovets, and M. Heimann, “Long-term Trend in CO2 Concentration in the Surface Atmosphere over Central Siberia,” Meteorol. Gidrol., No. 3 (2015) [Russ. Meteorol. Hydrol., No. 3, 40 (2015)].Google Scholar
  6. 6.
    A. Arneth, J. Kurbatova, O. Kolle, O. B. Shibistova, J. Lloyd, N. N. Vygodskaya, and E.-D. Schulze, “Comparative Ecosystem-atmosphere Exchange of Energy and Mass in a European Russian and a Central Siberian Bog. II. Interseasonal and Interannual Variability of CO2 Fluxes,” Tellus B, 54 (2002).Google Scholar
  7. 7.
    J. Barichivich, K. R. Briffa, T. J. Osborn, T. M. Melvin, and J. Caesar, “Thermal Growing Season and Timing of Biospheric Carbon Uptake across the Northern Hemisphere,” Global Biogeochem. Cycles, 26 (2012).Google Scholar
  8. 8.
    A. S. Denning, D. A. Randall, G. J. Collatz, and P. J. Sellers, “Simulation of Terrestrial Carbon Metabolism and Atmospheric CO2 in a General Circulation Model. Part2: Simulated CO2 Concentrations,” Tellus B, 48 (1996).Google Scholar
  9. 9.
    M. Forkel, N. Carvalhais, C. Rodenbeck, R. Keeling, M. Heimann, K. Thonicke, S. Zaehle, and M. Reichstein, “Enhanced Seasonal CO2 Exchange Caused by Amplified Plant Productivity in Northern Ecosystems,” Science, No. 6274, 351 (2016).Google Scholar
  10. 10.
    H. D. Graven, R. F. Keeling, S. C. Piper, P. K. Patra, B. B. Stephens, S. C. Wofsy, L. R. Welp, C. Sweeney, P. P. Tans, J. J. Keley, B. C. Daube, E. A. Kort, G. W. Santoni, and J. D. Bent, “Enhanced Seasonal Exchange of CO2 by Northern Ecosystems since 1960,” Science, 341 (2013).Google Scholar
  11. 11.
    K. Higuchi, D. Worthy, D. Chan, and A. Shashkov, “Regional Source/Sink Impact on the Diurnal, Seasonal and Inter-annual Variation in Atmospheric CO2 at a Boreal Forest Site in Canada,” Tellus B, 55 (2003).Google Scholar
  12. 12.
    M. Heimann, E.-D. Schulze, J. Winderlich, M. O. Andreae, X. Chi, C. Gerbig, O. Kolle, K. Kubler, J. Lavric, E. Mikhailov, A. Panov, S. Park, C. Rodenbeck, and A. Skorochod, “The Zotino Tall Tower Observatory (ZOTTO): Quantifying Large-scale Biogeochemical Changes in Central Siberia,” Nova Acta Leopoldina NF, No. 117 (399) (2014).Google Scholar
  13. 13.
    A. Ito, M. Inatomi, D. N. Huntzinger, C. Schwalm, A. M. Michalak, R. Cook, A. W. King, J. Mao, Y. Wei, W. M. Post, W. Wang, M. A. Arain, S. Huang, D. J. Hayes, D. M. Ricciuto, X. Shi, M. Huang, H. Lei, H. Tian, C. Lu, J. Yang, B. Tao, A. Jain, B. Poulter, S. Peng, P. Ciais, J. B. Fisher, N. Parazoo, K. Schefer, C. Peng, N. Zeng, and F. Zhao, “Decadal Trends in the Seasonal-cycle Amplitude of Terrestrial CO2 Exchange Resulting from the Ensemble of Terrestrial Biosphere Models,” Tellus B, 68 (2016).Google Scholar
  14. 14.
    F. Joos and R. Spahni, “Rates of Change in Natural and Anthropogenic Radiative Forcing over the Past 20000 Years,” Proc. Nat. Acad. Sci. USA, No. 5, 105 (2008).Google Scholar
  15. 15.
    C. D. Keeling, J. F. S. Chin, and T. P. Whorf, “Increased Activity of Northern Hemispheric Vegetation Inferred from Atmospheric CO2 Measurements,” Nature, 382 (1996).Google Scholar
  16. 16.
    I. B. Konovalov, E. V. Berezin, P. Ciais, G. Broquet, M. Beekmann, J. Hadji-Lazaro, C. Clerbaux, M. O. Andreae, J. W. Kaise, and E.-D. Schulze, “Constraining CO2 Emissions from Open Biomass Burning by Satellite Observations of Co-emitted Species: A Method and Its Application to Wildfires in Siberia,” Atmos. Chem. Phys., No. 14 (2014).Google Scholar
  17. 17.
    E. A. Kozlova, A. C. Manning, Y. Kisilyakhov, T. Seifert, and M. Heimann, “Seasonal, Synoptic, and Diurnal-scale Variability of Biogeochemical Trace Gases and O2 from a 300-m Tall Tower in Central Siberia,” Global Biogeochem. Cycles, No. 22 (2008).Google Scholar
  18. 18.
    R. L. Langenfelds, R. J. Francey, B. C. Pak, L. P. Steele, J. Lloyd, C. M. Trudinger, and C. E. Allison, “Interannual Growth Rate Variations of Atmospheric CO2 and Its 513C, H2, CH4, and CO between 1992 and 1999 Linked to Biomass Burning,” Global Biogeochem. Cycles, No. 3, 16 (2002).Google Scholar
  19. 19.
    C. Le Quere, R. Moriarty, R. M. Andrew, G. P. Peters, P. Ciais, P. Friedlingstein, S. D. Jones, S. Sitch, P. Tans, A. Arneth, T. A. Boden, L. Bopp, Y. Bozec, J. G. Canadell, F. Chevallier, C. E. Cosca, I. Harris, M. Hoppema, R. A. Houghton, J. I. House, A. K. Jain, T. Johannessen, E. Kato, R. F. Keeling, V. Kitidis, K. Klein Goldewijk, C. Koven, C. S. Landa, P. Landschutzer, A. Lenton, I. D. Lima, G. H. Marland, J. T. Mathis, N. Metzl, Y. Nojiri, A. Olsen, T. Ono, W. Peters, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rodenbeck, S. Saito, J. E. Sailsbury, U. Schuster, J. Schwinger, R. Seferian, J. Segschneider, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, G. R. van der Werf, N. Viovy, Y.-P. Wang, R. Wanninkhof, A. Wiltshire, and N. Zeng, “Global Carbon Budget 2014,” Earth System Science Data, 7 (2015).Google Scholar
  20. 20.
    S. Murayama, K. Higuchi, and S. Taguchi, “Influence of Atmospheric Transport on the Interannual Variation of the CO2 Seasonal Cycle Downward Zero-crossing,” Geophys. Res. Lett., 34 (2007).Google Scholar
  21. 21.
    C. Roser, L. Montagnani, E.-D. Schulze, D. Mollicone, O. Kolle, M. Meroni, D. Papale, L. Belelli Marchesini, S. Federici, and R. Valentini, “Net CO2 Exchange Rates in Three Different Successional Stages of the “Dark Taiga” of Central Siberia,” Tellus B, 54 (2002).Google Scholar
  22. 22.
    K. W. Thoning, P. P. Tans, and W. D. Komhyr, “Atmospheric Carbon Dioxide at Mauna Loa Observatory. 2. Analysis of the NOAA GMCC Data, 1974–1985,” J. Geophys. Res., No. D6, 94 (1989).Google Scholar
  23. 23.
    A. Timokhina, A. Prokushkin, M. Korets, C. Gerbig, and M. Heimann, “Assessing of Concentration Footprint Climatology at Zotino Tall Tower Observatory (ZOTTO) in the Boreal Forest of Central Siberia,” in Water Resources, Forest, Marine and Ocean Ecosystems Conference Proceedings SGEM, Book 3, Vol. 2 (2016).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. V. Timokhina
    • 1
  • A. S. Prokushkin
    • 1
  • A. V. Panov
    • 1
  • R. A. Kolosov
    • 2
  • N. V. Sidenko
    • 1
  • J. Lavric
    • 2
  • M. Heimann
    • 2
  1. 1.Sukachev Institute of Forest, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  2. 2.Max Planck Institute for BiogeochemistryJenaGermany

Personalised recommendations