Russian Meteorology and Hydrology

, Volume 43, Issue 4, pp 251–257 | Cite as

Influence of Global Climate Changes in Past Centuries on the Chemical Composition of Bottom Sediments in the Chukchi Sea

  • A. S. AstakhovEmail author
  • E. G. Vologina
  • A. V. Dar’in
  • I. A. Kalugin
  • V. V. Plotnikov


The sedimentary cores from the southern and northern parts of the Chukchi Sea illustrate the influence of climate and environmental conditions on the chemical composition of bottom sediments accumulated at present and in the recent 500 years. The low concentration of biogenic (Ca, Br, Sr) and some redox-sensitive (Fe, Mn, Zn) elements is typical of the recent sediments accumulated in the areas with permanent ice cover and of the sediments accumulated during cold periods (Little Ice Age and especially the Maunder Minimum). The possibility is revealed of identifying cyclic changes in environmental conditions including sea ice extent in the concrete Arctic areas. This may be used to detail the regional forecast of future changes.


Bottom sediments chemical composition bioproductivity redox conditions ice conditions paleoclimatology Chukchi Sea Little Ice Age 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. S. Astakhov, E. A. Gusev, A. N. Kolesnik, and R. B. Shakirov, “Conditions of the Accumulation of Organic Matter and Metals in the Bottom Sediments of the Chukchi Sea,” Geologiya i Geofizika, No. 9, 54 (2013) [Russian Geology and Geophysics, No. 9, 54 (2013)].Google Scholar
  2. 2.
    E. G. Vologina, M. Shturm, I. A. Kalugin, A. V. Dar'in, A. S. Astakhov, G. P. Chernyaeva, A. N. Kolesnik, A. A. Bosin, and N. V. Kulagina, “Reconstruction of the Conditions of Late Holocene Sedimentation by Integrated Analysis of a Core of the Bottom Sediments from the Chukchi Sea,” Dokl. Akad. Nauk, No. 5, 469 (2016) [Dokl. Earth Sci., No. 2, 469 (2016)].Google Scholar
  3. 3.
    A. V. Dar'in, I. A. Kalugin, and Ya. V. Rakshun, “Scanning X-ray Microanalysis of Bottom Sediments Using Synchrotron Radiation from the BINP VEPP-3 Storage Ring,” Izv. Akad. Nauk, Fizika, No. 2, 77 (2013) [Bull. Russ. Acad. Sci.: Physics, No. 2, 77 (2013)].Google Scholar
  4. 4.
    Review of Hydrometeorological Processes in the Arctic Ocean in 2007, Ed. by I. E. Frolov (AANII, St. Petersburg, 2008) [in Russian].Google Scholar
  5. 5.
    I. B. Tsoi, M. S. Obrezkova, K. I. Aksentov, A. N. Kolesnik, and V. S. Panov, “Late Holocene Environmental Changes in the Southwestern Chukchi Sea Inferred from Diatom Analysis,” Biologiya Morya, No. 4 (2017) [Russ. J. Mar. Biol., No. 4, 43 (2017)].Google Scholar
  6. 6.
    Electronic Climatic Oceanographic Atlas of the Arctic Ocean (Winter and Summer Conditions on Two CDs) (AANII, U.S. National Snow and Ice Data Center, 1998) [in Russian].Google Scholar
  7. 7.
    A. S. Astakhov, A. A. Bosin, A. N. Kolesnik, and M. S. Obrezkova, “Sediment Geochemistry and Diatom Distribution in the Chukchi Sea: Application for Bioproductivity and Paleoceanography,” Oceanography, No. 3, 28 (2015).Google Scholar
  8. 8.
    L. K. Coachman, K. Aagaard, and R. B. Tripp, The Bering Strait. The Regional Physical Oceanography (Univ. Washington Press, Seattle and London, 1975).Google Scholar
  9. 9.
    H. M. Feder, A. S. Naidu, S. C. Jewett, J. M. Hameedi, W. R. Johnson, and T. E. Whitledge, “The Northeastern Chukchi Sea: Benthos-environmental Interactions,” Mar. Ecol. Prog. Ser., 111 (1994).Google Scholar
  10. 10.
    J. M. Grebmeier, “Biological Community Shifts in Pacific Arctic and Sub-Arctic Seas,” Ann. Rev. Mar. Sci., 4 (2012).Google Scholar
  11. 11.
    J. D. Haigh, M. Lockwood, and M. S. Giampapa, The Sun, Sotar Anatogs and the Climate (Springer-Verlag, Berlin, Heidelberg, 2005).Google Scholar
  12. 12.
  13. 13.
    I. Kalugin, A. Astakhov, A. Darin, and K. Aksentov, “Anomalies of Bromine in the Estuarine Sediments as a Signal of Floods Associated with Typhoons,” Chinese J. Oceanology and Limnology, No. 6, 33 (2015).Google Scholar
  14. 14.
    L. D. Keigwin, J. P. Donelly, M. S. Cook, N. W. Driscoll, and J. Brigham-Grette, “Rapid Sea-level Rise and Holocene Climate in the Chukchi Sea,” Geology, 36 (2006).Google Scholar
  15. 15.
    J. L. McKay and T. F. Pedersen, “The Accumulation of Silver in Marine Sediments: A Link to Biologic Ba and Marine Productivity,” Global Biogeochem. Cycles, 22 (2008).Google Scholar
  16. 16.
    P. J. Reimer, E. Bard, A. Bayliss, J. W. Beck, P. G. Blackwell, C. B. Ramsey, C. E. Buck, H. Cheng, R. L. Edwards, M. Friedrich, P. M. Grootes, T. P. Guilderson, H. Haflidason, I. Hajdas, C. Hatte, T. J. Heaton, D. L. Hoffmann, A. G. Hogg, K. A. Hughen, K. F. Kaiser, B. Kromer, S. W. Manning, M. Niu, R. W. Reimer, D. A. Richards, E. M. Scott, J. R. Southon, R. A. Staff, C. S. M. Turney, J. van der Plicht, “IntCal13 and Marine 13 Radiocarbon Age Calibration Curves 0-50,000 Years Cal BP,” Radiocarbon, No. 4, 55 (2013).Google Scholar
  17. 17.
    J. Stroeve, M. M. Holland, W. Meier, T. Scambos, and M. Serreze, “Arctic Sea Ice Decline: Faster than Forecast,” Geophys. Res. Lett., 34 (2007).Google Scholar
  18. 18.
    M. Stuiver and T. F. Braziunas, “Sun, Ocean, Climate and Atmospheric 14CO2: An Evaluation of Casual and Spectral Relationships,” Holocene, No. 4, 3 (1993).Google Scholar
  19. 19.
    M. Stuiver and P. J. Reimer, “Extended 14C Database and Revised CALIB 3.0 14C Age Calibration Program,” Radiocarbon, No. 1, 35 (1993).Google Scholar
  20. 20.
    C. Viscosi-Shirley, N. Pisias, and K. Mammone, “Sediment Source Strength, Transport Pathways and Accumulation Patterns on the Siberian-Arctic's Chukchi and Laptev Shelves,” Cont. Shelf Res., No. 11-13, 23 (2003).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. S. Astakhov
    • 1
    Email author
  • E. G. Vologina
    • 2
  • A. V. Dar’in
    • 3
  • I. A. Kalugin
    • 3
  • V. V. Plotnikov
    • 1
  1. 1.Il’ichev Pacific Oceanological Institute, Far Eastern BranchRussian Academy of SciencesVladivostokRussia
  2. 2.Institute of the Earth’s Crust, Siberian BranchRussian Academy of SciencesIrkutskRussia
  3. 3.Sobolev Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations