Russian Meteorology and Hydrology

, Volume 43, Issue 4, pp 235–244 | Cite as

Temperature and Humidity Regime Changes on the Black Sea Coast in 1982-2014

  • M. A. AleshinaEmail author
  • P. A. Toropov
  • V. A. Semenov


Specific features of climate change in the Black Sea and on its northeastern coast for the period of 1982-2014 are investigated based on weather station data, ERA-Interim reanalysis, and satellite data on sea surface temperature. The main trends in air temperature and precipitation are revealed from weather station data and are compared with reanalysis data. The spatial peculiarities of variations in air temperature, integrated water vapor, moisture flux divergence, CAPE, and vertical velocity are analyzed. It is shown that air temperature variations on the coast highly correlate with sea surface temperature. In general, surface air temperature in the region has risen, especially in summer. Despite the increase in integrated water vapor and CAPE, no statistically significant increase was revealed for the mean amount of precipitation, for its intensity and maximum values. This fact might be associated with the moisture flux divergence increase in the region due to the intensification of large-scale downdrafts.


Climate of the Black Sea coast precipitation regime ERA-Interim reanalysis atmospheric dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. P. Alisov, Climate of the USSR (MGU, Moscow, 1956) [in Russian].Google Scholar
  2. 2.
    O. N. Bulygina, V. N. Razuvaev, and T. M. Aleksandrova, Description of the Dataset ofDaily Air Temperature and Precipitation for Weather Stations of Russia and the Former USSR (TTTR), Database State Registration Certificate No. 2014620942.Google Scholar
  3. 3.
    G. V. Gruza, E. Ya. Ran'kova, and T. V. Platova, “Assessment of Seasonal Features of Regional Manifestations of Global Climate Change,” in Problems of Ecological Monitoring and Ecosystem Modeling, Vol. 23 (2010) [in Russian].Google Scholar
  4. 4.
    V. V. Efimov, E. M. Volodin, A. E. Anisimov, and V. S. Barabanov, “Regional Climate Projections for the Black Sea Region in the Late 21st Century,” Morskoi Gidrofizicheskii Zhurnal, No. 5 (2015) [in Russian].Google Scholar
  5. 5.
    A. A. Isaev, Statistics in Meteorology and Climatology (MGU, Moscow, 1988) [in Russian].Google Scholar
  6. 6.
    A. V. Kislov, Climate in the Past, Present, and Future (MAIK Nauka/Interperiodika, Moscow, 2001) [in Russian].Google Scholar
  7. 7.
    T. A. Matveeva, D. Yu. Gushchina, and O. G. Zolina, “Large-scale Indicators of Extreme Precipitation in Coastal Natural-economic Zones of the European Part of Russia,” Meteorol. Gidrol., No. 11 (2015) [Russ. Meteorol. Hydrol., No. 11, 40 (2015)].Google Scholar
  8. 8.
    I. I. Mokhov and M. G. Akperov, “Tropospheric Lapse Rate and Its Relation to Surface Temperature from Reanalysis Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 42 (2006) [Izv., Atmos. Oceanic Phys., No. 4, 42 (2006)].Google Scholar
  9. 9.
    S. A. Myslenkov and V. S. Arkhipkin, “Analysis of Wind Waves in the Tsemes Bay of the Black Sea Using the SWAN Model,” Trudy Gidromettsentra Rossii, No. 350 (2013) [in Russian].Google Scholar
  10. 10.
    A. A. Shestakova, K. B. Moiseenko, and P. A. Toropov, “Hydrodynamic Aspects of the Novorossiysk Bora Episodes in 2012-2013,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 5, 51 (2015) [Izv., Atmos. Oceanic Phys., No. 5, 51 (2015)].Google Scholar
  11. 11.
    N. Alexeevsky, D. V. Magritsky, K. P. Koltermann, I. Krylenko, and P. Toropov, “Causes and Systematics of Inundations of the Krasnodar Territory on the Russian Black Sea Coast,” Natural Hazards and Earth System Sci., No. 6, 16 (2016).Google Scholar
  12. 12.
    L. Bengtsson, K. I. Hodges, and E. Roeckner, “Storm Tracks and Climate Change,” J. Climate, No. 15, 19 (2006).Google Scholar
  13. 13.
    A. E. Croitoru, B. C. Chiotoroiu, V. I. Todorova, and V. Torica, “Changes in Precipitation Extremes on the Black Sea Western Coast,” Global and Planetary Change, 102 (2013).Google Scholar
  14. 14.
    D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hylm, L. Isaksen, P. Kellberg, M. Kohler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thepaut, and F. Vitart, “The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System,” Quart. J. Roy. Meteorol. Soc., No. 656, 137 (2011).Google Scholar
  15. 15.
    J. R. Holton and G. J. Hakim, An Introduction to Dynamic Meteorology (Academic Press, New York, 2012).Google Scholar
  16. 16.
    R. D. Hudson, M. F. Andrade, M. B. Follette, and A. D. Frolov, “The Total Ozone Field Separated into Meteorological Regimes. Part II: Northern Hemisphere Mid-latitude Total Ozone Trends,” Atmos. Chem. Phys., No. 12, 6 (2006).Google Scholar
  17. 17.
    P. Jones and I. Harris, CRU TS3.21: Climatic Research Unit (CRU) Time-series (TS) Version 3.21 of High Resolution Gridded Data of Month-by-month Variation in Climate (Jan. 1901-Dec. 2012) (NCAS British Atmospheric Data Centre, 2013).Google Scholar
  18. 18.
    G. Lenderink and E. van Meijgaard, “Increase in Hourly Precipitation Extremes beyond Expectations from Temperature Changes,” Nature Geosci., No. 8, 1 (2008).Google Scholar
  19. 19.
    J. Lu, G. A. Vecchi, and T. Reichler, “Expansion of the Hadley Cell under Global Warming,” Geophys. Res. Lett., No. 6, 34 (2007).Google Scholar
  20. 20.
    E. P. Meredith, V. A. Semenov, D. Maraun, W. Park, and A. V. Chernokulsky, “Crucial Role of Black Sea Warming in Amplifying the 2012 Krymsk Precipitation Extreme,” Nature Geosci., No. 8, 8 (2015).Google Scholar
  21. 21.
    S.-K. Min, X. Zhang, F. W. Zwiers, and G. C. Hegerl, “Human Contribution to More-intense Precipitation Extremes,” Nature, No. 7334, 470 (2011).Google Scholar
  22. 22.
    M. W. Moncrieff and M. J. Miller, “The Dynamics and Simulation of Tropical Cumulonimbus and Squall Lines,” Quart. J. Roy. Meteorol. Soc., No. 432, 102 (1976).Google Scholar
  23. 23.
    R. W. Reynolds, T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, “Daily High-resolution Blended Analyses for Sea Surface Temperature,” J. Climate, No. 22, 20 (2007).Google Scholar
  24. 24.
    V. Semenov and L. Bengtsson, “Secular Trends in Daily Precipitation Characteristics: Greenhouse Gas Simulation with a Coupled AOGCM,” Climate Dynamics, No. 2, 19 (2002).Google Scholar
  25. 25.
    A. J. Simmons, K. M. Willett, P. D. Jones, P. W. Thorne, and D. P. Dee, “Low-frequency Variations in Surface Atmospheric Humidity, Temperature, and Precipitation: Inferences from Reanalyses and Monthly Gridded Observational Data Sets,” J. Geophys. Res., 115 (2010).Google Scholar
  26. 26.
    "IPCC, 2013: Summary for Policymakers," in Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley (Cambridge Univ. Press, Cambridge, United Kingdom and New York, NY, USA, 2013).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • M. A. Aleshina
    • 1
    • 2
    • 3
    Email author
  • P. A. Toropov
    • 1
    • 2
  • V. A. Semenov
    • 2
    • 3
  1. 1.Lomonosov Moscow State University, GSP-1, Leninskie GoryMoscowRussia
  2. 2.Institute of GeographyRussian Academy of SciencesMoscowRussia
  3. 3.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations