Russian Meteorology and Hydrology

, Volume 41, Issue 9, pp 593–600 | Cite as

Climate prediction for the extratropical northern hemisphere for the next 500 years based on periodic natural processes

  • V. V. BabichEmail author
  • A. V. Dar’in
  • I. A. Kalugin
  • L. G. Smolyaninova


Five paleoclimatic reconstructions for the extratropical Northern Hemisphere are decomposed into quasiperiodic variations using the spectral analysis methods. The existence of ∼1000-, ∼500-, ∼350-, and ∼200-year periodicities is established which define the climatic variability over the past four millennia. Based on the identified quasiperiodicities, the climate forecast for the Northern Hemisphere extratropical zone is obtained. The forecast demonstrates that the currently observed warm climate will generally be kept for 500 years. However, the strongly pronounced trend towards the gradual cooling is expected in the 22nd century.


Climatology paleoreconstruction natural quasiperiodicity fore cast 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. V. Babich, N. A. Rudaya, I. A. Kalugin, and A. V. Dar’in, “Complex Use of the Geochemical Features of Bottom Deposits and Pollen Records for Paleoclimate Re con structions (with Lake Teletskoe, Altai Republic, as an Example),” Sibirskii Ekologicheskii Zhurnal, No. 4 (2015) [Contemporary Problems ofEcology, No. 4 (2015)].Google Scholar
  2. 2.
    A. A. Vasil’ev, D. S. Drozdov, and N. G. Moskalenko, “Permafrost Temperature Dynamics of West Siberia in the Context of Climate Changes,” Kriosfera Zemli, No. 2, 12 (2008) [in Russian].Google Scholar
  3. 3.
    Yu. I. Vitinskii, M. Konetskii, and G. V. Kuklin, The Statistics of Sunspot Activity (Nauka, Moscow, 1986) [in Russian].Google Scholar
  4. 4.
    Z. M. Gudkovich, V. P. Karklin, and I. V. Frolov, “Intra-secular Changes of Climate and the Ice Cover Area of the Eurasian Arctic Seas and Their Possible Causes,” Meteorol. Gidrol., No. 6 (2005) [Russ. Meteorol. Hydrol., No. 6 (2005)].Google Scholar
  5. 5.
    V. A. Dergachev and O. M. Raspopov, “Long-term Solar Activity is a Conirolling Factor of the 20th Century Global Warming,” Solnechno-zemnaya Fizika, No. 12, 2 (2008) [in Russian].Google Scholar
  6. 6.
    A. G. Egorov, “The Solar Cycle and Two Regimes of Long-term Variations of Surface Air Pressure in High and Middle Latitudes of the Northern Hemisphere in the Winter Period,” Dokl. Akad. Nauk, No. 3, 414 (2007) [Dokl. Earth Sci., No. 3, 414 (2007)].Google Scholar
  7. 7.
    V. V. Klimenko, V. V. Matskovskii, and D. Dal’man, “Comprehensive Reconstruction of Temperature in the Russian Arctic over the Last Two Millennia,” Arktika: Ekologiya i Ekonomika, No. 12, 4 (2013) [in Russian].Google Scholar
  8. 8.
    K. Ya. Kondrat’ev, The Global Climate (Nauka, St. Petersburg, 1992) [in Russian].Google Scholar
  9. 9.
    A. S. Monin and A. A. Berestov, “New Approaches to Climate,” Vestnik RAN, No. 2, 75 (2005) [Herald of Russ. Acad. Sci., No. 1, 75 (2005)].Google Scholar
  10. 10.
    Yu. P. Perevedentsev, Theory of Climate (KGU, Kazan, 2004) [in Russian].Google Scholar
  11. 11.
    B. V. Poltaraus and A. V. Kislov, Climatology (MGU, Moscow, 1986) [in Russian].Google Scholar
  12. 12.
    A. M. Sleptsov and V. V. Klimenko, “Generalization of Paleoclimatic Data and Reconstruction of Climate in Eastern Europe in the Last 2000 Years,” Istoriya i Sovremennost’, No. 1 (2005) [in Russian].Google Scholar
  13. 13.
    P. E. Damon and A. N. Peristykh, “Radiocarbon Calibration and Application to Geophysics, Solar Physics, and Astrophysics,” Radiocarbon, No. 1, 42 (2000).Google Scholar
  14. 14.
    V. A. Kravchinsky, C. G. Langereis, S. D. Walker, et al., “Discovery of Holocene Millennial Climate Cycles in the Asian Continental Interior: Has the Sun Been Governing the Continental Climate?”, Global and Planetary Climate Change, 110 (2013).Google Scholar
  15. 15.
    F. C. Ljungqvist, “A New Reconstruction of Temperature Variability in the Extra-tropical Northern Hemisphere during the Last Two Millennia,” Geogr. Ann., No. 3, 92 (2010).Google Scholar
  16. 16.
    H.-J. Ludecke, C. O. Weiss, and A. Hempelmann, “Paleoclimate Forcing by the Sol ar De Vries/Suess Cycle,” Clim. Past Discuss., No. 11 (2015).Google Scholar
  17. 17.
    A. Moberg, D. M. Sonechkin, K. Holmgren, et al., “Highly Variable Northern Hemisphere Temperatures Reconstructed from Low-and High-resolution Proxy Data,” Nature, No. 7026, 433 (2005).Google Scholar
  18. 18.
    A. J. Nederbragt and J. Thurow, “Geographic Coherence of Mill ennial-scale Climate Cycles during the Holocene,” Palaeogeography, Palaeoclimatology, Palaeoecology, 221 (2005).Google Scholar
  19. 19.
    O. M. Raspopov, V. A. Dergachev, J. Esper, et al., “The Influence of the De Vries (∼200-year) Solar Cycle on Climate Variations: Results from the Central Asian Mountains and Their Global Link,” Palaeogeography, Palaeoclimatology, Palaeoecology, 259 (2008).Google Scholar
  20. 20.
    F. Steinhilber, J. A. Abreu, J. Beer, et al., 9400 Years of Cosmic Radiation and Solar Activity from Ice Cores and Tree Rings, Scholar
  21. 21.
    M. Stuiver and T. F. Braziunas, “Sun, Ocean, Climate and Atmospheric l4CO2: An Evaluation of Causal and Spectral Relationships,” Holocene, No. 3 (1993).Google Scholar
  22. 22.
    G. Wagner, J. Beer, J. Masarik, et al., “Presence of the Solar De Vries Cycle (∼205 Years) during the Last 390 Ice Age,” Geophys. Res. Lett., No. 2, 28 (2001).Google Scholar
  23. 23.
    B. Yang, A. Braeuning, K. R. Johnson, and S. Yafeng, “General Characteristics of Temperature Variation in China during the Last Two Millennia,” Geophys. Res. Lett., No. 9, 29 (2002).Google Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • V. V. Babich
    • 1
    Email author
  • A. V. Dar’in
    • 1
  • I. A. Kalugin
    • 1
  • L. G. Smolyaninova
    • 1
  1. 1.Sobolev Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations