Russian Meteorology and Hydrology

, Volume 41, Issue 7, pp 479–486 | Cite as

Data assimilation in the ocean circulation model of high spatial resolution using the methods of parallel programming

Article

Abstract

The parallel implementation of the method of multivariate optimum interpolation (MVOI) for the INMIO ocean circulation model with the horizontal resolution of 1/10° and 49 vertical levels is proposed to correct the model computations with the measurement data. The data assimilation in the high-resolution model with the high degree of scalability is tested. The results of numerical experiments on assimilation of data from ARGO drifters located in the North Atlantic are presented. The model output data were also compared with independent data on sea surface temperature obtained from Aqua (NASA) satellite observations. The skill of the model solution was qualitatively evaluated. It is demonstrated experimentally that data assimilation substantially (to 30%) improves the model output data and reduces the error in the operational 24-hour forecast.

Keywords

World Ocean circulation model observational data assimilation multivariate optimum interpolation parallel computations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Agoshkov, V. M. Ipatova, V. B. Zalesnyi, et al., “Problems of Variational Assimllation of Observational Data for Ocean General Circulation Models and Methods for Their Solution,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6 46 2010 [Izv., Atmos. Oceanic Phys., No. 6, 46 (2010)].Google Scholar
  2. 2.
    V. I. Agoshkov, E. I. Parmuzin, and V. P. Shutyaev, “Observational Data Assimilation in the Problem of Black Sea Circulation and Sensitivity Analysis of Its Solution,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6 49 2013 [Izv., Atmos. Oceanic Phys., No. 6, 49 (2013)].Google Scholar
  3. 3.
    K. P. Belyaev, K. A. S. Tanajura, and N. P. Tuchkova, “Comparison of Methods for ARGO Drifters Data Assimilation into a Hydrodynamical Model of the Ocean,” Okeanologiya, No. 5 52 2012 [Oceanology, No. 5, 52 (2012)].Google Scholar
  4. 4.
    L. S. Gandin, Objective Analysis of Meteorological Fields (Gidrometeoizdat, Leningrad, 1963) [in Russian].Google Scholar
  5. 5.
    V. B. Zalesnyi and G. I. Marchuk, “Modeling of the World Ocean Circulation with the Four-dimensional Assimilation of Temperature and Salinity Fields,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1 48 2012 [Izv., Atmos. Oceanic Phys., No. 1, 48 (2012)].Google Scholar
  6. 6.
    R. A. Ibrayev, R. N. Khabeev, and K. V. Ushakov, “Eddy-resolving 1/10° Model of the World Ocean,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1 48 2012 [Izv., Atmos. Oceanic Phys., No. 1, 48 (2012)].Google Scholar
  7. 7.
    V. V. Kalmykov and R. A. Ibrayev, “The Overlapping Algorithm for Solving Shallow Water Equations on Computers with Distributed Memory,” Vestnik UGATU, No. 5 17 2013 [in Russian].Google Scholar
  8. 8.
    V. V. Kalmykov and R. A. Ibrayev, “A Framework for the Coupled Modeling of the Ocean-Ice-Atmosphere-Land System on Massively-parallel Architectures,” Vychislitel’nye Metody i Programmirovanie, 14 (2013) [in Russian].Google Scholar
  9. 9.
    V. V. Knysh, G. K. Korotaev, A. I. Mizyuk, and A. S. Sarkisyan, “Assimilation of Hydrological Observation Data for Calculating Currents in Seas and Oceans,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1 48 2012 [Izv., Atmos. Oceanic Phys., No. 1, 48 (2012)].Google Scholar
  10. 10.
    G. I. Marchuk, Methods of Numerical Mathematics (Nauka, Moscow, 1977) [in Russian].Google Scholar
  11. 11.
    G. I. Marchuk, Numerical Solution of the Problems of Atmosphere and Ocean Dynamics (Gidrometeoizdat, Leningrad, 1974) [in Russian].Google Scholar
  12. 12.
    M. D. Tsyrul’nikov, P. I. Svirenko, V. E. Gorin, et al., “A New Technology of Objective Analysis Based on 3d-Var Scheme,” in Results of Testing of New and Improved Technologies, Models and Methods of Hydrometeorological Forecasting, No. 39 (2011) [in Russian].Google Scholar
  13. 13.
    A. V. Shlyaeva, V. G. Mizyak, and M. A. Tolstykh, “Experimental System of Data Assimilation Based on the Local Ensemble Kalman Filter for the Global Atmospheric Model,” Trudy Gidromettsentra Rossii, Issue 348 (2012) [in Russian].Google Scholar
  14. 14.
    M. Buehner, P. L. Houtekamer, C. Charette, et al., “Intercomparison of Variational Data Assimilation and the Ensemble Kalman Filter for Global Deterministic NWP, Part II: One-month Experiments with Real Observations,” Mon. Wea. Rev., No. 5, 138 (2010).Google Scholar
  15. 15.
    J. Cummings, “Operational Multivariate Ocean Data Assimilation,” Quart. J. Roy. Meteorol. Soc., No. 613, 131 (2005).Google Scholar
  16. 16.
    J. Cummings, L. Bertino, P. Brasseur, et al., “Ocean Data Assimilation Systems for GODAE,” Oceanography, No. 3, 22 (2009).Google Scholar
  17. 17.
    R. Daley, Atmospheric Data Analysis (Cambridge Univ. Press, Cambridge, 1991).Google Scholar
  18. 18.
    G. Evensen, Data Assimilation, The Ensemble Kalman Filter, 2nd ed. (Springer, Berlin, 2009).Google Scholar
  19. 19.
    P. A. Francis, P. N. Vinayachandran, and S. S. C. Shenoi, “The Indian Ocean Forecast System,” Current Science, No. 10, 104 (2013).Google Scholar
  20. 20.
    GODAE OceanView Science Team, Work Plan 2009-2013, http://wwwgodaeoceanvieworg.Google Scholar
  21. 21.
    T. M. Hamille and J. S. Whitaker, “Accounting for the Error due to Unresolved Scales in Ensemble Data Assimilation: A Comparison of Different Approaches,” Mon. Wea. Rev., 133 (2005).Google Scholar
  22. 22.
    P. L. Houtekamer, B. He, and H. L. Mitchell, “Parallel Implementation of an Ensemble Kalman Filter,” Mon. Wea. Rev., 142 (2013).Google Scholar
  23. 23.
    E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability (Cambridge Univ. Press, Cambridge, 2003).Google Scholar
  24. 24.
    E. Kalnay, H. Li, T. Miyoshi, et al., “4-D-Var or Ensemble Kalman Filter?”, Tellus A, No. 5, 59 (2007).Google Scholar
  25. 25.
    A. Lorenc, “A Global Three-dimensional Multivariate Statistical Interpolation Scheme,” Mon. Wea. Rev., No. 131 (1981).Google Scholar
  26. 26.
    P. R. Oke, G. B. Brassington, D. A. Griffin, and A. Schiller, “Ocean Data Assimilation: A Case for Ensemble Optimal Interpolation,” Austral. Meteorol. and Oceanogr. J., 59 (2010).Google Scholar
  27. 27.
    P. R. Oke, A. Schiller, D. A. Griffin, and G. B. Brassington, “Ensemble Data Assimilation for an Eddy-resolving Ocean Model of the Australian Region,” Quart. J. Roy. Meteorol. Soc., No. 613, 131 (2005).Google Scholar
  28. 28.
    S. Smith, J. Cummings, and C. Rowley, Validation Test Report for the Navy Coupled Ocean Data Assimilation 3D Variational Analysis (NCODA-VAR) System, Version 3.43 (2012).Google Scholar
  29. 29.
    C. A. S. Tanajura and K. A. Belyaev, “A Sequential Data Assimilation Method Based on the Properties of a Diffusion-type Process,” Appl. Math. Model, No. 5, 33 (2009).Google Scholar
  30. 30.
    X. Wang, D. M. Barker, C. Snyder, and T. M. Hamill, “A Hybrid ETKF-3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment,” Mon. Wea. Rev., 136 (2008).Google Scholar
  31. 31.
    M. Zhang, F. Zhang, X.-Y. Huang, and X. Zhang, “Intercomparison of an Ensemble Kalman Filter with Three- and Four-dimensional Variational Data Assimilation Methods in a Limited-area Model over the Month of June 2003,” Mon. Wea. Rev., No. 2, 139 (2011).Google Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • M. N. Kaurkin
    • 1
    • 2
    • 3
  • R. A. Ibrayev
    • 1
    • 2
    • 3
    • 4
  • K. P. Belyaev
    • 2
    • 5
  1. 1.Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  3. 3.Hydrometeorological Research Center of the Russian FederationMoscowRussia
  4. 4.Moscow Institute of Physics and Technology (State University)Dolgoprudny, Moscow oblastRussia
  5. 5.Dorodnitsyn Computing CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations