Russian Meteorology and Hydrology

, Volume 41, Issue 6, pp 425–434 | Cite as

Numerical simulation of the structure and evolution of a polar mesocyclone over the Kara Sea. Part 1. Model validation and estimation of instability mechanisms

The Winners of the Conference of Young Scientists


Numerical experiments based on the WRF model were conducted to analyze the structure and evolution of the polar mesoscale cyclone developed over the Kara Sea on September 29-30, 2008. It was found that baroclinic instability in the lower troposphere and convective instability (including that due to the wind-induced surface heat exchange) did not play a significant role. Significant contribution was made by the downward advection of potential vorticity from the upper troposphere and by the conditional instability of second kind. It is demonstrated that if water phase transitions are not taken into account, the mesocyclone intensity is reduced by 7-20% and the time of its development increases by 4 hours. The advection of potential vorticity was not the only process causing the intensification of the lower potential vorticity anomaly associated with cyclonic circulation.


Polar low the Arctic WRF-ARW model satellite remote sensing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. S. Verezemskaya and V. M. Stepanenko, “Numerical Simulation of Intense Polar Mesoscale Cyclones with the WRF Model,” in International Conference and School of Young Scientists on Measurements, Modeling, and Information Systems for Environmental Studies (Tomskii TsNTI, Tomsk, 2014) [in Russian].Google Scholar
  2. 2.
    E. M. Volodin and V. N. Lykosov, “Parameterization of Heat and Moisture Transfer in the Soil-Vegetation System for Use in Atmospheric General Circulation Models: 1 Formulation and Simulations Based on Local Observational Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 34 (1998) [Izv., Atmos. Oceanic Phys., No. 4, 34 (1998)].Google Scholar
  3. 3.
    G. S. Golitsyn, “Pol ar Lows and Tropical Hurricanes: Their Energy and Sizes and a Quantitative Criterion for Their Generation,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 5, 44 (2008) [Izv., Atmos. Oceanic Phys., No. 5, 44 (2008)].Google Scholar
  4. 4.
    F. Ahmadi-Givi, G. C. Craig, and R. S. Plant, “The Dynamics of a Midlatitude Cyclone with Very Strong Latent Heat Retease,” Quart. J. Roy. Meteorol. Soc., No. 596, 130 (2004).Google Scholar
  5. 5.
    T. J. Bracegirdle and S. L. Gray, “The Dynamics of a Polar Low Assessed Using Potential Vorticity Inversion,” Quart. J. Roy. Meteorol. Soc., No. 641, 135 (2009).Google Scholar
  6. 6.
    S. Businger, “The Synoptic Climatology of Polar Low Outbreaks,” Tellus A, No. 5, 37 (1985).Google Scholar
  7. 7.
    J. G. Charney and A. Eliassen, “On the Growth of the Hurricane Depression,” J. Atmos. Sci., No. 1, 21 (1964).Google Scholar
  8. 8.
    S. A. Clough, C. S. A. Davitt, and A. J. Thorpe, “Attribution Concepts Applied to the Omega Equation,” Quart. J. Roy. Meteorol. Soc., No. 536, 122 (1996).Google Scholar
  9. 9.
    W. D. Collins, P. J. Racsh, B. A. Boville, et al., Description of the NCAR Community Atmosphere Model (CAM 3.0), Tech. Rep. NCAR/TN-464+ STR (2004).Google Scholar
  10. 10.
    A. C. L. Deveson, K. A. Browning, and T. D. Hewson, “A Classification of FASTEX Cyclones Using a Height-attributable Quasi-geostrophic Vertical Motion Diagnostic,” Quart. J. Roy. Meteorol. Soc., No. 579, 128 (2002).Google Scholar
  11. 11.
    K. A. Emanuel and R. Rotunno, “Potar Lows as Arctic Hurricanes,” Tellus A, No. 1, 41 (1989).Google Scholar
  12. 12.
    I. Fore, J. E. Kristjansson, E. W. Kolstad, et al., “A Hurricane-like Polar Low Fuelled by Sensible Heat Flux: High Resolution Numerical Simulations,” Quart. J. Roy. Meteorol. Soc., No. 666, 138 (2012).Google Scholar
  13. 13.
    J. R. Holton and G. J. Hakim, An Introduction to Dynamic Meteorology (Academic Press, 2013).Google Scholar
  14. 14.
    B. J. Hoskins, I. Draghici, and H. C. Davies, “A New Look at the Omega-equation,” Quart. J. Roy. Meteorol. Soc., No. 439, 104 (1978).Google Scholar
  15. 15.
    B. J. Hoskins, M. E. McIntyre, and A. W. Robertson, “On the Use and Significance of Isentropic Potential Vorticity,” Quart. J. Roy. Meteorol. Soc., No. 470, 111 (1985).Google Scholar
  16. 16.
    Z. I. Janjic, “Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model,” NCEP Office Note, 437 (2002).Google Scholar
  17. 17.
    A. Kasahara, “Various Vertical Coordinate Systems Used for Numerical Weather Prediction,” Mon. Wea. Rev., No. 7, 102 (1974).Google Scholar
  18. 18.
    J. B. Klemp, W. C. Skamarock, and J. Dudhia, “Conservative Split-explicit Time Integration Methods for the Compressible Nonhydrostatic Equations,” Mon. Wea. Rev., 135 (2007).Google Scholar
  19. 19.
    J. B. Klemp and R. B. Wilhelmson, “The Simulation of Three-dimensional Convective Storm Dynamics,” J. Atmos. Sci., No. 6, 35 (1978).Google Scholar
  20. 20.
    R. Laprise, “The Euler Equations of Motion with Hydrostatic Pressure as an Independent Variable,” Mon. Wea. Rev., No. 1, 120 (1992).Google Scholar
  21. 21.
    Y.-L. Lin, R. D. Farley, and H. D. Orville, “Bulk Parameterization of the Snow Field in a Cloud Model,” J. Climate and Appl. Meteorol., 22 (1983).Google Scholar
  22. 22.
    M. T. Montgomery and B. F. Farrell, “Polar Low Dynamics,” J. Atmos. Sci., No. 24, 49 (1992).Google Scholar
  23. 23.
    T. E. Nordeng and E. A. Rasmussen, “A Most Beautiful Polar Low. A Case Study of a Polar Low Development in the Bear Island Region,” Tellus A, No. 2, 44 (1992).Google Scholar
  24. 24.
    S. Peterssen and S. J. Smebye, “On the Development of Extratropical Cyclones,” Quart. J. Roy. Meteorol. Soc., No. 414, 97 (1971).Google Scholar
  25. 25.
    R. S. Plant, G. C. Craig, and S. L. Gray, “On a Threefold Classification of Extratropical Cyclogenesis,” Quart. J. Roy. Meteorol. Soc., No. 594, 129 (2003).Google Scholar
  26. 26.
    E. Rasmussen, “The Polar Low as an Extratropical CISK Disturbance,” Quart. J. Roy. Meteorol. Soc., No. 445, 105 (1979).Google Scholar
  27. 27.
    E. A. Rasmussen and J. Turner, Polar Lows: Mesoscale Weather Systems in the Polar Regions (Cambridge Univ. Press, 2003).CrossRefGoogle Scholar
  28. 28.
    W. C. Skamarock, J. B. Klemp, J. Dudhia, et al., A Description of the Advanced Research WRF Version 3, Technical Report (2008).Google Scholar
  29. 29.
    W. C. Skamarock and M. L. Weisman, “The Impact of Positive-definite Moisture Transport on NWP Precipita-tion Forecasts,” Mon. Wea. Rev., No. 1, 137 (2009).Google Scholar
  30. 30.
    M. T. Stoelinga, “A Potential Vorticity-based Study of the Role of Diabatic Heating and Friction in a Numerically Simulated Baroclinic Cyclone,” Mon. Wea. Rev., No. 5, 124 (1996).Google Scholar
  31. 31.
    V. V. Voevodin, S. A. Zhumatiy, S. I. Sobolev, et al., “Practice of “Lomonosov” Supercomputer,” Open Systems J., 7 (2012).Google Scholar
  32. 32.
    Z.-L. Yang, G.-Y. Nio, K. E. Mitchell, et al., “The Community Noah Land Surface Model with Multiparameteri-zation Options (Noah-MP): 2. Evaluation over Global River Basins,” J. Geophys. Res., 116 (2011).Google Scholar
  33. 33.
    E. V. Zabolotskikh, L. M. Mitnik, and B. Chapron, “New Approach for Severe Marine Weather Study Using Satellite Passive Microwave Sensing,” Geophys. Res. Lett., No. 13, 40 (2013).Google Scholar
  34. 34.
    S. Zilitinkevich, “Non-local Turbulent Transport Pollution Dispersion Aspects of Coherent Structure of Convec-tive Flows,” in Air Pollution III, Air Pollution Theory and Simulation, Ed. by H. Power, N. Moussiopoulos, and C. A. Brebbia (Computational Mechanics Publ., Southampton, Boston 1, 1995).Google Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  1. 1.Lomonosov Moscow State University, GSP-1Leninskie Gory, MoscowRussia
  2. 2.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia

Personalised recommendations