Advertisement

Russian Meteorology and Hydrology

, Volume 38, Issue 12, pp 808–817 | Cite as

The tropopause: Variety of definitions and modern approaches to identification

  • A. R. Ivanova
Article

Abstract

Presented is a review of the papers dealing with a problem of the tropopause definition as an interface between the troposphere and stratosphere. It is demonstrated that there are more than ten approaches to the tropopause identification based on the differences in thermal, chemical, dynamic, and radiation regimes of the troposphere and stratosphere. Given are the examples of the tropopause approximation with different surfaces or layers of specific properties.

Keywords

Ozone Global Position System RUSSIAN Meteorology Tropopause Height Isentropic Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. P. Perov and A. Kh. Khrgian, Current Problems of Atmospheric Ozone (Gidrometeoizdat, Leningrad, 1980) [in Russian].Google Scholar
  2. 2.
    N. P. Shakina, The Dynamics of Atmospheric Fronts and Cyclones (Gidrometeoizdat, Leningrad, 1985) [in Russian].Google Scholar
  3. 3.
    N. P. Shakina and V. V. Borisova, “Experience of Using Potential Vorticity to Calculate the Height of the Tropopause,” Meteorol. Gidrol., No. 9 (1992) [Russ. Meteorol. Hydrol., No. 9 (1992)].Google Scholar
  4. 4.
    N. P. Shakina, A. R. Ivanova, and I. N. Kuznetsova, “Cold Surges and Their Manifestation in Ozonometric Observations at the Kislovodsk High-Altitude Scientific Station,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 40 (2004) [Izv., Atmos. Oceanic Phys., No. 4, 40 (2004)].Google Scholar
  5. 5.
    G. N. Shur, N. M. Sitnikov, and A. V. Drynkov, “A Mesoscale Structure of Meteorological Fields in the Tropopause Layer and in the Lower Stratosphere over the Southern Tropics (Brazil),” Meteorol. Gidrol, No. 8 (2007) [Russ. Meteorol. Hydrol., No. 8, 32 (2007)].Google Scholar
  6. 6.
    J. A. Añel, J. C. Añtuca, L. de la Torre, et al., “Global Statistics of Multiple Tropopauses from the IGRA Database,” Geophys. Res. Lett., 34 (2007).Google Scholar
  7. 7.
    J. A. Añel, L. Gimeno, L. de la Torre, and R. Nieto, “Changes in Tropopause Height for the Eurasian Region Determined from CARDS Radiosonde Data,” Naturwissenschaften., 93 (2006).Google Scholar
  8. 8.
    R. A. Anthes, C. Rocken, and Y. H. Kuo, “Applications of COSMIC to Meteorology and Climate,” Terr. Atmos. Oceanic Sci., 11 (2000).Google Scholar
  9. 9.
    M. Beekman, G. Ancellet, and G. Megie, “Climatology of Tropospheric Ozone in Southern Europe and Its Relation to Potential Vorticity,” J. Geophys. Res., 99 (1994).Google Scholar
  10. 10.
    S. W. Bell and M. A. Geller, “Tropopause Inversion Layer: Seasonal and Latitudinal Variations and Representation in Standard Radiosonde Data and Global Models,” J. Geophys. Res., 113 (2008).Google Scholar
  11. 11.
    S. Bethan, G. Vaughan, and S. J. Reid, “A Comparison of Ozone and Thermal Tropopause Height and the Impact of Tropopause Definition of Quantifying the Ozone Content of the Troposphere,” Quart. J. Roy. Meteorol. Soc., 122 (1996).Google Scholar
  12. 12.
    J. Bian and H. Chen, “Statistics of the Tropopause Inversion Layer over Beijing,” Adv. Atmos. Sci., No. 3, 25 (2008).Google Scholar
  13. 13.
    T. Birner, “Residual Circulation and Tropopause Structure,” J. Atmos. Sci., 67 (2010).Google Scholar
  14. 14.
    T. Birner, A. Dornbrack, and U. Schumann, “How Sharp the Tropopause at Midlatitudes?,” Geophys. Res. Lett., No. 14, 29 (2002).Google Scholar
  15. 15.
    T. Birner, D. Sankey, and T. Shepherd, “The Tropopause Inversion Layer in Models and Analyses,” Geophys. Res. Lett., 33 (2006).Google Scholar
  16. 16.
    J. Brioude, J.-P. Cammas, O. R. Cooper, and P. Nedelec, “Characterization of the Composition, Structure, and Seasonal Variation of the Mixing Layer above the Extratropical Tropopause as Revealed by MOZA1C Measurements,” J. Geophys. Res., 113 (2008).Google Scholar
  17. 17.
    K. A. Browning, A. J. Thorpe, A. Montani, et al, “Interaction of Tropopause Depressions with an Extropical Cyclone and Sensitivity of Forecast to Analysis Errors,” Mon. Wea. Rev., 128 (2000).Google Scholar
  18. 18.
    A. J. Charlton, A. O’Neill, P. Berrisford, and W. A. Lahoz, “Can the Dynamical Impact of the Stratosphere on the Troposphere be Described by Large-scale Adjustment to the Stratospheric PV Distribution,” Quart. J. Roy. Meteorol. Soc., 131 (2005).Google Scholar
  19. 19.
    S. J. Colucci, “Stratospheric Influences on Tropospheric Weather Systems,” J. Atmos. Sci., 67 (2010).Google Scholar
  20. 20.
    B. D. Cox, M. Bithell, and L. J. Gray, “Modeling of Stratospheric Intrusions within a Mid-latitude Synoptic-scale Disturbance,” Quart. J. Roy. Meteorol. Soc., 123 (1997).Google Scholar
  21. 21.
    E. F. Danielsen, “Ozone Transport,” in Ozone in the Free Atmosphere (Van No strand Reinhold, New York, 1985).Google Scholar
  22. 22.
    L. El’Amraoui, V.-H. Peuch, P. Ricaud, et al., “Ozone Loss in the 2002–2003 Arctic Votrex Deduced from the Assimilation of Odin/SMR O3 and N2O Measurements: N2O as a Dynamical Tracer,” Quart. J. Roy. Meteorol. Soc., 134 (2008).Google Scholar
  23. 23.
    H. Elbern, J. Hendricks, and A. Ebel, “A Climatology of Tropopause Folds by Global Analyses,” Theor. Appl. Climatol., 59 (1998).Google Scholar
  24. 24.
    O. M. Evtushevsky, A. V. Grytsai, A. R. Klekociuk, and G. P. Milinevsky, “Total Ozone and Tropopause Zonal Asymmetry during the Antarctic Spring,” J. Geophys. Res., 113 (2008).Google Scholar
  25. 25.
    P. M. Forster and K. P. Shine, “Radiative Forcing and Temperature Trends from Stratospheric Ozone Changes,” J. Geophys. Res., 102 (1997).Google Scholar
  26. 26.
    A. Gettelman, P. M. F. Forster, M. Fujiwara, et al., “The Radiation Balance of the Tropical Tropopause Layer,” J. Geophys. Res., 109 (2004).Google Scholar
  27. 27.
    G. Hakim, “Climatology of Coherent Structures on the Extratropical Tropopause,” Mon. Wea. Rev., 128 (2000).Google Scholar
  28. 28.
    P. Haynes and E. Shuckburgh, “Effective Diffusivity as a Diagnostic of Atmospheric Transport. 2. Troposphere and Lower Stratosphere,” J. Geophys. Res., 105 (2000).Google Scholar
  29. 29.
    E. J. Highwood and B. J. Hoskins, “The Tropical Tropopause,” Quart. J. Roy. Meteorol. Soc., 124 (1998).Google Scholar
  30. 30.
    Y. Hinssen, A. van Delden, T. Opsteegh, and W. de Geus, “Stratospheric Impact on Tropospheric Winds Deduced from Potential Vorticity Inversion in Relation to the Arctic Oscillation,” Quart. J. Roy. Meteorol. Soc., 136 (2010).Google Scholar
  31. 31.
    M. P. Hoerling, T. K. Schaak, and A. J. Lenzen, “Global Objective Tropopause Analysis,” Mon. Wea. Rev., 119 (1991).Google Scholar
  32. 32.
    K. P. Hoinka, “Statistics of the Global Tropopause Pressure,” Mon. Wea. Rev., 126 (1998).Google Scholar
  33. 33.
    J. R. Holton, P. H. Haynes, M. E. McIntyre, et al., “Stratosphere-Troposphere Exchange,” Rev. Geophys., No. 4, 33 (1995).Google Scholar
  34. 34.
    D. A. Hooper and J. Arvelius, “Monitoring of the Arctic Winter Tropopause: A Comparison of Radiosonde, Ozonosonde and MST Radar Observations,” in MRI Atmospheric Research Programme (2000).Google Scholar
  35. 35.
    B. J. Hoskins, M. E. McIntyre, and A. W. Robertson, “On the Use and Significance of Isentropic Potential Vorticity Maps,” Quart. J. Roy. Meteorol. Soc., No. 470, 111 (1985).Google Scholar
  36. 36.
    X. Huang and H. Su, “Cloud Radiative Effect on Tropical Troposphere to Stratosphere Transport Represented in a Large-scale Model,” Geophys. Res. Lett., 35 (2008).Google Scholar
  37. 37.
    P. James, A. Stohl, C. Forster, et al., “A 15-Year Climatology of Stratosphere-Troposphere Exchange with a Lagrangian Particle Dispersion Model. 2. Mean Climate and Season Variability,” J. Geophys. Res., No. D12, 108 (2003).Google Scholar
  38. 38.
    K.-E. Kim, E.-S. Jung, B. Campistron, and B.-H. Heo, “A Physical Examination of Tropopause Height and Stratospheric Air Intrusion—A Case Study,” J. Meteorol. Soc. Japan, No. 5, 79 (2001).Google Scholar
  39. 39.
    R. L. Korty and T. Schneider, “A Climatology of the Tropospheric Thermal Stratification Using Saturation Potential Vorticity,” J. Climate, 20 (2007).Google Scholar
  40. 40.
    J. Kowol-Santen, H. Elbern, and A. Ebel, “Estimation of Cross-Tropopause Air-Mass Fluxes at Midlatitudes: Comparison of Different Numerical Methods and Meteorological Situations,” Mon. Wea. Rev., 128 (2000).Google Scholar
  41. 41.
    A. Kunz, C. Schiller, F. Rohrer, et al., “Statistical Analysis of Water Vapor and Ozone in the UT/LS Observed during SPURT and MOSAIC,” Atmos. Chem. and Physics, 8 (2008).Google Scholar
  42. 42.
    H. Luce, S. Fukao, F. Dalaudier, and M. Crochet, “Strong Mixing Events near the Tropopause with MU Radar and High Resolution Balloon Techniques,” J. Atmos. Sci., No. 20, 59 (2002).Google Scholar
  43. 43.
    A. M. M. Manders, W. T. M. Verkley, J. J. Diepeveen, and A. R. Moene, “Application of Vorticity Modification Method to a Case of Rapid Cyclogenesis over the Atlantic Ocean,” Quart. J. Roy. Meteorol. Soc., 133 (2007).Google Scholar
  44. 44.
    O. Martius, C. Schwierz, and M. Sprenger, “Dynamical Tropopause Variability and Potential Vorticity Streamers in the Northern Hemisphere—A Climatological Analysis,” Adv. Atmos. Sci., No. 3, 25 (2008).Google Scholar
  45. 45.
    J. Meloen, P. Siegmund, P. van Velthoven, et al., “Stratosphere-Troposphere Exchange: A Model and Method Intercomparison,” J. Geophys. Res., No. D12, 108 (2003).Google Scholar
  46. 46.
    M. C. Morgan and J. Nielsen-Gammon, “Using Tropopause Maps to Diagnose Midlatitude Weather Systems,” Mon. Wea. Rev., 126 (1998).Google Scholar
  47. 47.
    A. Muller and V. Wirth, “Resolution Dependence of the Tropopause Inversion Layer in an Idealized Model for Upper-Tropospheric Anticyclones,” J. Atmos. Sci., 66 (2009).Google Scholar
  48. 48.
    D. J. Muraki and G. J. Hakim, “Balanced Asimmetries of Waves of the Tropopause,” J. Atmos. Sci., No. 3, 58 (2001).Google Scholar
  49. 49.
    J. W. Nielsen-Gammon, “A Visualization of the Global Dynamic Tropopause,” Bull. Amer. Meteorol. Soc., No. 6, 82 (2001).Google Scholar
  50. 50.
    G. A. Postel and M. H. Hitchman, “Observational Diagnosis of a Rossby Wave Breaking Event along the Subtropical Tropopause,” Mon. Wea. Rev., 129 (2001).Google Scholar
  51. 51.
    M. E. Pyle, D. Keyser, and L. F. Bosart, “A Diagnostic Study of Jet Streams: Kinematic Signatures and Relationship to Coherent Tropopause Disturbances,” Mon. Wea. Rev., 132 (2004).Google Scholar
  52. 52.
    W. J. Randel and F. Wu, “The Polar Summer Tropopause Inversion Layer,” J. Atmos. Sci., 67 (2010).Google Scholar
  53. 53.
    W. J. Randel, W. Fu, and P. Forster, “The Extratropical Tropopause Inversion Layer: Global Observations with GPS data, and Radiative Forcing Mechanism,” J. Atmos. Sci., 12 (2007).Google Scholar
  54. 54.
    M. V. Ratnam, T. Tsuda, S. Mori, and T. Kozu, “Modulation of Tropopause Temperature Structure Revealed by Simultaneous Radiosonde and CHAMP GPS Measurements,” J. Meteorol. Soc. Japan, No. 6, 84 (2006).Google Scholar
  55. 55.
    F. Ravetta, G. Ancellet, J. Kowol-Santen, et al., “Ozone, Temperature, and Wind Field Measurements in a Tropopause Fold: Comparison with a Mesoscale Model Simulation,” Mon. Wea. Rev., 127 (1999).Google Scholar
  56. 56.
    T. Reichler, P. J. Kushner, and L. M. Polvani, “The Coupled Stratosphere-Troposphere Response to Impulsive Forcing from the Troposphere,” J. Atmos. Sci., 62 (2005).Google Scholar
  57. 57.
    G. C. Reid and K. S. Gage, “On the Annual Variation in Height of the Tropical Tropopause,” 38 (1981).Google Scholar
  58. 58.
    E. P. Salathe, Jr. and R. B. Smith, “In Situ Observations of Temperature Microstructure above and below the Tropopause,” J. Atmos. Sci., No. 21, 49 (1992).Google Scholar
  59. 59.
    T. Schneider, “Zonal Momentum Balance, Potential Vorticity, Dynamics, and Mass Fluxes on Near-Surface Isentropes,” J. Atmos. Sci., 62 (2005).Google Scholar
  60. 60.
    M. A. Shapiro, “Further Evidence of the Mesoscale and Turbulent Structure of Upper Level Jet Stream-Frontal Zone Systems,” Mon. Wea. Rev., 106 (1978).Google Scholar
  61. 61.
    T. G. Shepherd, “Issues in Stratosphere-Troposphere Coupling,” J. Meteorol. Soc. Japan, No. 4B, 80 (2002).Google Scholar
  62. 62.
    M. Siegmund, On the Coupling between the Stratosphere and the Troposphere (Technische Universitet Eindhoven, Proefschrift, Eindhoven, 2003).Google Scholar
  63. 63.
    S.-W. Son, S. Lee, and S. B. Feldstein, “Interseasonal Variability of the Zonal-mean Extratropical Tropopause Height,” J. Atmos. Sci., 64 (2007).Google Scholar
  64. 64.
    S.-W. Son, L. M. Polvani, D. W. Waugh, et al., “The Impact of Stratospheric Ozone Recovery on Tropopause Height Trends,” J. Climate, 22 (2009).Google Scholar
  65. 65.
    Y. Song and N. Nakamura, “Eady Instability of Isolated Baroclinic Jets with Meridionally Varying Tropopause Height,” J. Atmos. Sci., 57 (2000).Google Scholar
  66. 66.
    M. Sprenger, H. Wernli, and M. Bourqui, “Stratosphere-Troposphere Exchange and Its Relation to Potential Vorticity Streamers and Cutoffs near the Extratropical Tropopause,” J. Atmos. Sci., 64 (2007).Google Scholar
  67. 67.
    I. Stajner, K. Wargan, S. Pawson, et al., “Assimilated Ozone from EOS-Aura: Evaluation of the Tropopause Region and Tropospheric Columns,” J. Geophys. Res., 113 (2008).Google Scholar
  68. 68.
    P. W. Staten and T. Reichler, “Use of Radio Occultation for Long-term Tropopause Studies: Uncertainties, Biases, and Instabilities,” J. Geophys. Res., 113 (2008).Google Scholar
  69. 69.
    W. Steinbrecht, H. Claude, U. Kohler, and K. P. Hoinka, “Correlations between Tropopause Height and Total Ozone: Implications for Long-term Changes,” J. Geophys. Res., 103 (1998).Google Scholar
  70. 70.
    A. Stohl, P. Bonasoni, P. Cristofanelli, et al., “Stratosphere-Troposphere Exchange: A Review, and What We Have Learned from STACCATO,” J. Geophys. Res., No. D12, 108 (2003).Google Scholar
  71. 71.
    A. Stohl, N. Spichtinger-Rakowsky, P. Bonasoni, et al., “The Influence of Stratospheric Intrusions and Ozone Concentrations,” Atmos. Environ., 34 (2000).Google Scholar
  72. 72.
    A. Stohl, H. Wernli, P. James, et al., “A New Perspective of Stratosphere-Troposphere Exchange,” Bull. Amer. Meteorol. Soc., 11 (2003).Google Scholar
  73. 73.
    Y. Terao, J. A. Logan, A. R. Douglass, and R. S. Stolarski, “Contribution of Stratospheric Ozone to the Interannual Variability of Tropospheric Ozone on the Northern Extratropics,” J. Geophys. Res., 113 (2008).Google Scholar
  74. 74.
    V. Thouret, J.-P. Cammas, B. Sauvage, et al., “Tropopause Referenced Ozone Climatology and Interannual Variability from the MOZAIC Programme,” Atmos. Chemistry and Physics, 6 (2006).Google Scholar
  75. 75.
    V. Thouret, A. Marenco, J. Logan, et al., “Comparisons of Ozone Measurements from the MOZAIC Airborne Program and the Ozone Sounding Network at Eight Locations,” J. Geophys. Res., 103 (1998).Google Scholar
  76. 76.
    J. Thuburn and G. C. Craig, “Stratospheric Influence on Tropopause Height: The Radiative Constraint,” J. Atmos. Sci., 57 (2000).Google Scholar
  77. 77.
    M. S. Wandshin, J. W. Nielsen-Gammon, and D. Keyser, “A Potential Vorticity Diagnostic Approach to Upper-Level Frontogenesis within a Developing Baroclinic Wave,” J. Atmos. Sci., 57 (2000).Google Scholar
  78. 78.
    H. Wernli and M. Sprenger, “Identification and ERA-15 Climatology of Potential Vorticity Streamers and Cut-offs near the Extratropical Tropopause,” J. Atmos. Sci., 64 (2007).Google Scholar
  79. 79.
    L. J. Wilcox, B. J. Hoskins, and K. P. Shine, “A Global-blended Tropopause Based on ERA Data. Part I: Climatology,” Quart. J. Roy. Meteorol. Soc., 138 (2012).Google Scholar
  80. 80.
    V. Wirth, “Cyclone-Anticyclone Asymmetry Concerning the Height of the Thermal and Dynamical Tropopause,” J. Atmos. Sci., 58 (2001).Google Scholar
  81. 81.
    WMO: Definition of the Tropopause, WMO Bull., No. 6 (1957).Google Scholar
  82. 82.
    WMO: Atmospheric Ozone 1985, Techn. Rep. No. 16 (WMO, Geneva, 1986).Google Scholar
  83. 83.
    A. Zahn, C. A. M. Brenninkmeijer, and P. F. J. Velthoven, “Passenger Aircraft Project CARIBIC 1997–2002. Parti: The Extratropical Chemical Tropopause,” Atmos. Chemistry and Physics Discussion, 4 (2004).Google Scholar
  84. 84.
    G. Zangl and K. P. Hoinka, “The Tropopause in Polar Region,” J. Climate, 14 (2001).Google Scholar
  85. 85.
    G. Zangl and V. Wirth, “Synoptic-scale Variability of the Polar and Subpolar Tropopause: Data Analysis and Idealized PV Inversions,” Quart. J. Roy. Meteorol. Soc., 128 (2002).Google Scholar
  86. 86.
    X.-L. Zhou, M. A. Geller, and M. Zhang, “Cooling Trend of the Tropical Cold Point Tropopause Temperatures and Its Implications,” J. Geophys. Res., 106 (2001).Google Scholar
  87. 87.
    X.-L. Zhou, M. A. Geller, and M. Zhang, “Tropical Cold Point Tropopause Characteristics Derived from ECMWF Reanalyses and Soundings,” J. Climate, 14 (2001).Google Scholar

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  • A. R. Ivanova
    • 1
  1. 1.Hydrometeorological Research Center of the Russian FederationMoscowRussia

Personalised recommendations