Advertisement

Russian Meteorology and Hydrology

, Volume 38, Issue 2, pp 100–105 | Cite as

Simulation of local atmospheric dynamics in the coastal region of Dunkerque

  • A. A. Sokolov
  • P. Augustin
  • E. V. Dmitriev
  • H. Delbarre
  • C. Talbot
  • M. Fourmentin
Article

Abstract

The structure of the lower troposphere has been studied during the sea-breeze and post sea-breeze events in an industrialized coastal area of the North Sea. Atmospheric dynamics and dispersion of pollutants in the lower troposphere have been analyzed by the experimental results of the 3D nonhydrostatic Meso-NH model in Dunkerque area (51°N, 2.20°E), in the north of France. The simulations were verified and extended by data of the measurement campaign. Ground-based remote sensing systems (lidar and sodar), surface meteorology and air quality network stations data have been employed. We illustrate the different pollution scenarios and breeze structure by the analysis of Lagrangian tracers and back trajectories.

Keywords

Lidar Lower Troposphere RUSSIAN Meteorology Gravity Current Back Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Augustin, H. Delbarre, F. Lohou, et al., “Investigation of Local Meteorological Events and Their Relationship with Ozone and Aerosols during an ESCOMPTE Photochemical Episode,” Ann. Geophys., No. 11, 24 (2006).Google Scholar
  2. 2.
    P. Augustin, C. Talbot, C. Leroy, et al., “Evolution of the Nocturnal Stratification and Vertical Ozone Concentrations of the Lower Troposphere in an Industrialized Coastal Environment of the North Sea,” in Proceedings of the European Geosci. Union, April 13–18, 2008, Vienna, Austria.Google Scholar
  3. 3.
    P. Bechtold, E. Bazile, F. Guichard, et al., “A Mass-Flux Convection Scheme for Regional and Global Models,” Quart. J. Roy. Meteorol. Soc., Issue 573, 127 (2001).Google Scholar
  4. 4.
    P. Bougeault and P. Lacarrére, “Parameterization of Orography-Induced Turbulence in a Mesobeta-Scale Model,” Mon. Wea. Rev., Issue 8, 117 (1989).Google Scholar
  5. 5.
    J. Cuxart, Ph. Bougeault, and J. L. Redelsperger, “A Turbulence Scheme Allowing for Mesoscale and Large-eddy Simulations,” Quart. J. Roy. Meteorol. Soc., Issue 562, 126 (2000).Google Scholar
  6. 6.
    H. Delbarre, P. Augustin, F. Saïd, et al., “Ground-based Remote Sensing Observation of the Complex Behaviour of the Marseille Boundary Layer during ESCOMPTE,” Atmos. Res., Issues 1–4, 74 (2005).Google Scholar
  7. 7.
    P. Drobinski, F. Saïd, G. Ancellet, et al., “Regional Transport and Dilution during High Pollution Episodes in Southern France: Summary of Findings from the ESCOMPTE Experiment,” J. Geophys. Res.: Atmos., Issue D13, 112 (2007).Google Scholar
  8. 8.
    P. Jabouille, R. Guivarch, P. Kloos, et al., “Parallelization of the French Meteorological Mesoscale Model MesoNH,” in EUROPAR’99 Parallel Processing. Lecture Notes in Computer Science, Vol. 1685, Ed. by P. Amestoy, Ph. Berger, M. Daydè, et al.edrs, (Springer-Verlag, 1999).Google Scholar
  9. 9.
    I. N. Kolev, T. S. Skakalova, O. Parvanov, et al., “Lidar Visualization of the Aerosol Stratification and the Internal Boundary Layer in the Coastal Area in the Case of Breeze Circulation,” in Proceedings of SPIE, Vol. 3052: Ninth International School on Quantum Electronics: Lasers-Physics and Applications, Ed. by P. Atanasov (1996).Google Scholar
  10. 10.
    J.-P. Lafore, J. Stein, N. Asencio, et al., “The Meso-NH Atmospheric Simulation System. Part I: Adiabatic Formulation and Control Simulations,” Ann. Geophys., No. 1, 16 (1998).Google Scholar
  11. 11.
    S. H. Melfi, J. D. Spinhirne, S.-H. Chou, and S. P. Palm, “Lidar Observations of the Vertically Organized Convection in the Planetary Boundary Layer over the Ocean,” J. Clim. Appl. Meteorol., Issue 8, 24 (1985).Google Scholar
  12. 12.
    P. Mestayer, P. Durand, P. Augustin, et al., “The Urban Boundary-Layer Field Campaign in Marseille (UBL/CLU-ESCOMPTE): Set-up and First Results,” Boundary-Layer Meteorol., Issue 2, 114 (2005).Google Scholar
  13. 13.
    S. T. K. Miller, B. D. Keim, R. W. Talbot, and H. Mao, “Sea Breeze: Structure, Forecasting, and Impacts,” Rev. Geophys., Issue 3, 41 (2003).Google Scholar
  14. 14.
    E. J. Mlawer, S. J. Taubman, P. D. Brown, et al., “Radiative Transfer for Inhomogeneous Atmospheres: RRTM, a Validated Correlated-k Model for the Longwave,” J. Geophys. Res.: Atmos., Issue D14, 102 (1997).Google Scholar
  15. 15.
    J.-J. Morcrette, “Radiation and Cloud Radiative Properties in the European Centre for Medium Range Weather Forecasts Forecasting System,” J. Geophys. Res.: Atmos., Issue D5, 96 (1991).Google Scholar
  16. 16.
    M. Nazir, F. I. Khan, and T. Husain, “Revised Estimates for Continuous Shoreline Fumigation: A PDF Approach,” J. Hazard. Mater., Issues 1–3, 118 (2005)Google Scholar
  17. 17.
    J. Noilhan and S. Planton, “A Simple Parameterization of Land Surface Processes for Meteorological Models,” Mon. Wea. Rev., Issue 3, 117 (1989).Google Scholar
  18. 18.
    J.-L. Redelsperger and G. Sommeria, “Méthode de Représentation de la Turbulence d’Échelle Inférieure á la Maille pour un Modéle Tridimensionnel de Convection Nuageuse,” Boundary-Layer Meteorol., Issue 4, 21 (1981) [in French].Google Scholar
  19. 19.
    C. Schär and H. Wernli, “Structure and Evolution of an Isolated Semi-geostrophic Cyclone,” Quart. J. Roy. Meteorol. Soc., Issue 509, 119 (1993).Google Scholar
  20. 20.
    J. Stein, E. Richard, J. P. Lafore, et al., “High-Resolution Non-Hydrostatic Simulations of Flash-Flood Episodes with Grid-Nesting and Ice-Phase Parameterization,” Meteorol. Atmos. Phys., Issue 2–4, 72 (2000).Google Scholar
  21. 21.
    C. Talbot, P. Augustin, C. Leroy, et al., “Impact of a Sea Breeze on the Boundary Layer Dynamics and the Atmospheric Stratification in a Coastal Area of the North Sea,” Boundary-Layer Meteorol., Issue 1, 125 (2007).Google Scholar
  22. 22.
    H. Wernli and H. C. Davies, “A Lagrangian-based Analysis of Extratropical Cyclones. I: The Method and Some Applications,” Quart. J. Roy. Meteor. Soc., Issue 538, 123 (1997).Google Scholar

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  • A. A. Sokolov
    • 1
    • 2
  • P. Augustin
    • 1
  • E. V. Dmitriev
    • 3
  • H. Delbarre
    • 1
  • C. Talbot
    • 4
  • M. Fourmentin
    • 1
  1. 1.Université du Littoral Cote d’OpaleDunkerqueFrance
  2. 2.Université Lille Nord de FranceLilleFrance
  3. 3.Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia
  4. 4.ACRI-STSophia-AntipolisFrance

Personalised recommendations