Russian Meteorology and Hydrology

, Volume 34, Issue 6, pp 335–347 | Cite as

Comparative analysis of geo-engineering approaches to climate stabilization

  • Yu. A. Izrael
  • A. G. Ryaboshapko
  • N. N. Petrov
Article

Abstract

Geo-engineering approaches to modern climate stabilization, irrelative to the Kyoto Protocol measures, are under consideration. Conditionally, these approaches are subdivided into two groups: purposive changes in the Earth radiation balance to compensate the greenhouse gas effect and removal of the excessive amount of carbon dioxide from the atmosphere. The first group includes such methods as injection of sulfate and other reflecting aerosols into the stratosphere, creation of orbital reflectors or reflectors at the Lagrange point, an increase in cloudiness over the World Ocean, and a change in the Earth surface albedo. Increased carbon dioxide uptake by forests, ocean, and artificial absorbers are considered within the second group. The methods considered were subject to a comparative analysis using the following criteria: possible fast realization, the ability to counteract the doubling of greenhouse gases, availability of natural analogs, impact on geophysical systems within natural variations, the absence of unacceptable ecological implications, possibility, if necessary, to immediately halt the action. The comparison showed that the use of stratospheric sulfate aerosols can be the most effective. It is emphasized that all geo-engineering directions can be realized simultaneously with the measures stipulated by the Kyoto Protocol.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. L. Aleksandrov, Yu. A. Izrael, I. L. Karol, and A. Kh. Khrgian, The Earth’s Ozone Shield and its Changes (Gidrometeoizdat, St. Petersburg, 1992) [in Russian].Google Scholar
  2. 2.
    M. I. Budyko, Climate Change (Gidrometeoizdat, Leningrad, 1974) [in Russian].Google Scholar
  3. 3.
    M. I. Budyko, L. S. Gandin, O. A. Drozdov, et al., “Prospects of Global Climate Impacts,” Izv. Akad. Nauk, ser. Geogr., No. 2 (1974) [Izv., ser. Geography, No. 2 (1974)].Google Scholar
  4. 4.
    Yu. A. Izrael, “Possible Preventions of Climate Change and its Negative Consequences,” in The Problems of the Kyoto Protocol, Ed. by Yu. A. Izrael (Nauka, Moscow, 2006) [in Russian].Google Scholar
  5. 5.
    Yu. A. Izrael, “About Modern Climate State and Suggestions on Actions to Counteract Climate Changes,” Meteorol. Gidrol., No. 10 (2008) [Russ. Meteorol. Hydrol., No. 10, 33 (2008)].Google Scholar
  6. 6.
    Yu. A. Izrael, Radiation Fallouts after Nuclear Explosions and Accidents (Progress-Pogoda, St. Petersburg, 1996) [in Russian].Google Scholar
  7. 7.
    Yu. A. Izrael, “Role of Stratospheric Aerosols in the Maintenance of the Present-day Climate,” in Proceedings International Conference on Problems of Hydrometeorological Safety (Gidromettsentr RF, Moscow, 2006).Google Scholar
  8. 8.
    Yu. A. Izrael, “An Effecient Way to Regulate the Global Climate Is the Main Objective of the Solution of the Climate Problem,” Meteorol. Gidrol., No. 10 (2005) [Russ. Meteorol. Hydrol., No. 10 (2005)].Google Scholar
  9. 9.
    Yu. A. Izrael, I. I. Borzenkova, and D. A. Severov, “Role of Stratospheric Aerosols in the Maintenance of Present-day Climate,” Meteorol. Gidrol., No. 1 (2007) [Russ. Meteorol. Hydrol., No. 1, 32 (2007)].Google Scholar
  10. 10.
    Yu. A. Izrael, G. L. Leoznov, and A. A. Rasnovskii, “Possibilities of Space and Nuclear Technologies to Reform World Energy of the 21st Century,” Izv. Akad. Nauk, ser. Energetika, No. 3 (2008) [Izv., Ser. Energy, No. 3 (2008)].Google Scholar
  11. 11.
    I. L. Karol, “Sizes of Radioactive Aerosols and their Transport in the Troposphere and Stratosphere,” Meteorol. Gidrol., No. 1 (1973) [Meteorol. Hydrol., No. 1 (1973)].Google Scholar
  12. 12.
    K. Ya. Kondrat’ev, L. S. Ivlev, and G. A. Nikol’skii, “Integrated Studies of the Stratospheric Aerosol,” Meteorol. Gidrol., No. 9 (1974) [Meteorol. Hydrol., No. 9 (1974)].Google Scholar
  13. 13.
    I. V. Petryanov-Smirnov and A. G. Sutugin, Aerosols (Nauka, Moscow, 1989) [in Russian].Google Scholar
  14. 14.
    R. J. Andres and A. D. Kasgnoc, “A Time Averaged Inventory of Subaerial Volcanic Sulphur Emissions,” J. Geophys. Res., 103 (1998).Google Scholar
  15. 15.
    R. Angel, “Feasibility of Cooling the Earth with a Cloud of Small Spacecraft near the Inner Lagrange Point (L1),” Proc. Nat. Acad. Sci. USA, No. 46, 103 (2006).Google Scholar
  16. 16.
    J. K. Angell, “Estimated Impact of Agung, El Chichon, and Pinatubo Volcanic Eruptions on Global and Regional Total Ozone after Adjustment for the QBO,” Geophys. Res. Lett., 24 (1997).Google Scholar
  17. 17.
    K. T. Bower, J. Choularton, J. Latham, et al., “Computational Assessment of a Proposed Technique for Global Warming Mitigation via Albedo Enhancement of Marine Stratocumulus Clouds,” Atmos. Res., 82 (2006).Google Scholar
  18. 18.
  19. 19.
    W. H. Brune, R. Turco, W. A. Matthews, et al., “Stratospheric Processes: Observations and Interpretation,” in Scientific Assessment of Ozone: Depletion 1991. WMO Global Research and Monitoring Project (World Meteorological Organization, Geneva, 1992), Report No. 25, Ch. 4.Google Scholar
  20. 20.
    N. Cassar, M. L. Bender, B. A. Barnett, et al., “The Southern Ocean Biological Response to Aeolian Iron Depositions,” Science, No. 5841, 317 (2007).Google Scholar
  21. 21.
    P. J. Crutzen, “Albedo Enhancement by Stratospheric Sulfur Injection: A Contribution to Resolve a Policy Dilemma?” Climate Change, 77 (2006).Google Scholar
  22. 22.
    P. J. Crutzen, “The Possible Importance of COS for the Sulfate Layer of the Stratosphere,” Geophys. Res. Lett., 3 (1976).Google Scholar
  23. 23.
    J. T. Early, “Space-based Solar Shield to Offset Greenhouse Effect,” J. Brit. Int. Soc., 42 (1989).Google Scholar
  24. 24.
    J. Faber, B. Boon, M. Berk, et al., Climate Change: Scientific Assessment and Policy Analysis. Aviation and Maritime Transport in a Post 2012 Climate Policy Regime (The Netherlands Research Program on Scientific Assessment and Policy Analysis (WAB) for Climate Change, 2007), Report 500102 008 (CE Report 06.7153.59).Google Scholar
  25. 25.
    B. W. Frost, “Phytoplankton Bloom on Iron Rations,” Nature, 383 (1996).Google Scholar
  26. 26.
    W. B. Grant, E. V. Browell, J. Fishman, et al., “Aerosol-associated Changes in Tropical Stratosphere Ozone Following the Eruption of Mount Pinatubo,” J. Geophys. Res., No. D4, 99 (1994).Google Scholar
  27. 27.
    J. Gribbin, Climatic Change. Pt. 2: Thermal Balance of the Earth (Cambridge University Press, Cambridge, 1977).Google Scholar
  28. 28.
    B. Haake, T. Rixen, T. Reemtsma, et al., “Processes Determining Seasonality and Interannual Variability of Settling Particle Fluxes to the Deep Arabian Sea,” in Particle Flux in the Ocean, SCOPE Report 57, Ed. by V. Ittekkot, P. Schafer, S. Honjo, and P. J. Depetris (John Wiley & Sons, Chichester, 1996).Google Scholar
  29. 29.
    W. Hall, Strategies against Climate Change (2006), http://www.spectrezine.org/environment/Hall2.htm.
  30. 30.
    D. J. Hofmann, S. J. Oltmans, J. M. Harris, et al., “Ozonesonde Measurements at Hilo, Hawaii Following the Eruption of Pinatubo,” Geophys. Res. Lett., 20 (1993).Google Scholar
  31. 31.
    IPCC. Climate Change 2001. IPCC Third Assessment Report. Working Group III: Mitigation (WMO, Geneva, 2001).Google Scholar
  32. 32.
    IPCC. Special Report on Carbon Dioxide Capture and Storage. Published for the Intergovernmental Panel on Climate Change (WMO/UNEP, Cambridge University Press, Cambridge, 2005).Google Scholar
  33. 33.
    Yu. A. Izrael and S. M. Semenov, “Critical Levels of Greenhouse Gases, Stabilization Scenarios, and Implications for the Global Decisions,” in Avoiding Dangerous Climate Change, Ed. by H. J. Schellnhuber, W. Cramer, N. Nakicenovic, et al. (Cambridge University Press, Cambridge, 2006).Google Scholar
  34. 34.
    C. E. Junge, “Sulfur in the Atmosphere,” J. Geophys. Res., 68 (1963).Google Scholar
  35. 35.
    D. Keith, “Photophoretic Levitation of Aerosols for Geo-engineering,” Geophys. Res. Abstracts, 10 (2008), EGU2008-A-11400.Google Scholar
  36. 36.
    D. E. Kinnison, K. E. Grant, P. S. Connet, et al., “The Chemical and Radiative Effects of the Mount Pinatubo Eruption,” J. Geophys. Res., 99 (1994).Google Scholar
  37. 37.
    B. Kravitz, A. Robock, L. Oman, et al., “Acid Deposition from Stratospheric Geo-engineering with Sulfate Aerosols,” Geophys. Res. Lett., 2008 (submitted).Google Scholar
  38. 38.
    Kyoto Protocol. The Kyoto Protocol to the UN Framework Convention on Climate Change (1998), http://unfccc.int/2860.php.
  39. 39.
    K. S. Lackner, “Climate Change: A Guide to CO2 Sequestration,” Science, No. 5626, 300 (2003).Google Scholar
  40. 40.
    L. Lane, K. Caldeira, R. Chatfield, and S. Longhoff, Workshop Report on Managing Solar Radiation, November 18–19, 2006, Ed. by L. Lane, K. Caldeira, R. Chatfield, and E. Langhoff (Report NASA/CP-2007-214558, 2007).Google Scholar
  41. 41.
    J. Latham, “Cooling May Be Possible, but We Need Safety Data,” Nature, 447 (2007).Google Scholar
  42. 42.
    B. Launder and J. M. T. Thompson, “Geoscale Engineering to Avert Dangerous Climate Change,” Philosophical Trans. Roy. Soc., 366 (2008).Google Scholar
  43. 43.
    T. M. Lenton and N. E. Vaughan, “The Radiative Forcing Potential of Different Climate Geo-engineering Options,” Atmos. Chem. Phys. Discuss., 9 (2009).Google Scholar
  44. 44.
    J. H. Martin, “Glacial-interglacial CO2 Change. The Iron Hypothesis,” Paleoocenography, 5 (1990).Google Scholar
  45. 45.
    J. H. Martin and S. E. Fitzwater, “Iron Deficiency Limits Phytoplankton Growth in the Northeast Pacific Sub-Arctic,” Nature, 331 (1988).Google Scholar
  46. 46.
    M. P. McCormick, L. W. Thomason, and C. R. Trepte, “Atmospheric Effect of the Mt. Pinatubo Eruption,” Nature, 373 (1995).Google Scholar
  47. 47.
    NAS. Policy Implication of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Panel on Policy Implications of Greenhouse Warming (US National Academy of Science/National Academies Press, Washington, DC, 1992).Google Scholar
  48. 48.
    T. H. Peng and W. S. Broecker, “Dynamical Limitations on Antarctic Iron Fertilization Strategy,” Nature, 349 (1991).Google Scholar
  49. 49.
    S. S. Penner, A. M. Schneider, and E. M. Kennedy, “Active Measures for Reducing the Global Climate Impacts of Escalating CO2 Concentrations,” Acta Astronautica, 11 (1984).Google Scholar
  50. 50.
    R. F. Pueschel, “Stratospheric Aerosols: Formation, Properties, Effects,” J. Aerosol Sci., No. 3, 27 (1996).Google Scholar
  51. 51.
    W. J. Randel, F. Wu, J. M. Russell III, et al., “Ozone and Temperature Changes in the Stratosphere Following the Eruption of Mount Pinatubo,” J. Geophys. Res., No. D8, 100 (1995).Google Scholar
  52. 52.
    A. Robock, “Volcanic Eruptions and Climate,” Rev. Geophys., No. 2, 38 (2000).Google Scholar
  53. 53.
    J. F. Rosenfield, D. B. Considine, P. E. Meade, et al., “Stratospheric Effects of Mount Pinatubo Aerosol Studied with a Coupled Two-dimensional Model,” J. Geophys. Res., No. D3, 102 (1997).Google Scholar
  54. 54.
    K. I. Roy and R. Kennedy, Mirro Smoke—Ameliorationg Climate Change with Giant Solar Sails. Whole Earth Review (2001), https://ssl.catalog.com/~ultimax.com/whitepapers/2001_3c.html.
  55. 55.
    Y. Sahai, V. W. J. H. Kirchhoff, and P. C. Alvara, “Pinatubo Eruptions: Effects on Stratospheric O3 and SO2 over Brazil,” J. Atmos. and Solar-Terrestrial Physics, No. 3, 59 (1997).Google Scholar
  56. 56.
    A. N. Salamatin, V. Yu. Lipenkov, N. I. Barkov, et al., “Ice-core Age Dating and Paleothermometer Calibration Based on Isotope and Temperature Profiles from Deep Boreholes at Vostok Station (East Antarctica),” J. Geophys. Res., No. D8, 103 (1998).Google Scholar
  57. 57.
    W. Seifritz, “Mirrors to Halt Global Warming,” Nature, 340 (1989).Google Scholar
  58. 58.
    T. G. Shepherd and W. J. Randel, “Key Issues Arising from the 2006 WMO/UNEP Ozone Assessment. Stratospheric Processes and their Role in Climate (SPARC),” Newsletter, No. 29 (2007).Google Scholar
  59. 59.
    S. Solomon, “Stratospheric Ozone Depletion: A Review of Concepts and Theory,” Rev. Geophys., 37 (1999).Google Scholar
  60. 60.
    G. Stenchikov, A. Robock, V. Ramaswamy, et al., “Arctic Oscillation Response to the 1991 Mt. Pinatubo Eruption: Effects of Volcanic Aerosols and Ozone Depletion,” J. Geophys. Res., 107 (2002).Google Scholar
  61. 61.
    E. Teller, “The Planet Needs a Sunscreen,” Wall Street J., October 17 (1997).Google Scholar
  62. 62.
    E. Teller, R. Hyde, and L. Wood, Active Climate Stabilization: Practical Physics-based Approaches to Prevention of Climate Change, Preprint UCRL-JC-148012 (Lawrence Livermore National Laboratory, Livermore, CA, 2002), www.llnl.gov/global-warm/148012.pdf.Google Scholar
  63. 63.
    E. Teller, L. Wood, and R. Hyde, Global Warming and Ice Ages: Prospects for Physics-based Modification of Global Change, Preprint UCRL-JC-128715 (Lawrence Livermore National Laboratory, Livermore, CA, 1997).Google Scholar
  64. 64.
    Ch. Textor, H. F. Graf, C. Timmreck, and A. Robock, “Emissions from Volcanoes,” in Emissions of Atmospheric Trace Compounds, Ed. by C. Granier, P. Artaxo, and C. Reeves (Kluwer, Dordrecht, 2004), Ch. 7.Google Scholar
  65. 65.
    M. A. Tolbert, M. J. Rossi, and D. M. Golden, “Heterogeneous Interactions of Chlorine Nitrate, Hydrogen Chloride, and Nitric Acid with Sulfuric Acid Surfaces at Stratospheric Temperatures,” Geophys. Res. Lett., No. 15, 8 (1988).Google Scholar
  66. 66.
    T. A. Wigley, “A Combined Mitigation/Geo-engineering Approach to Climate Stabilization,” Science, 314 (2006).Google Scholar
  67. 67.
    WMO (World Meteorological Organization) Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project (WMO, Geneva, 2007), Report No. 5.Google Scholar

Copyright information

© Allerton Press, Inc. 2009

Authors and Affiliations

  • Yu. A. Izrael
    • 1
  • A. G. Ryaboshapko
    • 1
  • N. N. Petrov
    • 1
  1. 1.Institute of Global Climate and EcologyRoshydromet and Russian Academy of SciencesMoscowRussia

Personalised recommendations