Russian Meteorology and Hydrology

, Volume 34, Issue 5, pp 265–273 | Cite as

Field experiment on studying solar radiation passing through aerosol layers

  • Yu. A. Izrael
  • V. M. Zakharov
  • N. N. Petrov
  • A. G. Ryaboshapko
  • V. N. Ivanov
  • A. V. Savchenko
  • Yu. V. Andreev
  • Yu. A. Puzov
  • B. G. Danelyan
  • V. P. Kulyapin
Article

Abstract

Results of a field experiment on studying solar radiation passing in the visible wavelength range are described with the model aerosol media created in the surface atmosphere. High-efficiency thermocondensation generators were used for creating model aerosol media. The index of refraction and an average size of the aerosol particles formed are close to those characteristic of the natural stratospheric aerosol. The composition and technical characteristics of the equipment complex used in the experiments to control aerosol optical and microphysical parameters and meteorological conditions of the experiment are considered. The Gaussian model of impurity dispersion in the boundary layer is used for the analysis and interpretation of measurement results. It is found that with a number concentration of aerosol particles of ∼102–103 cm−3 (which corresponds to the aerosol density in the deposited layer of about 1–10 mg/m2 with the layer thickness along the ray path of about 100 m) the solar radiation attenuation with artificial aerosol layers accounts for 1 to 10%. Model estimates are in satisfactory agreement with the measurement results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. E. Abramovich, Theory of Turbulent Jets (Fizmatgiz, Moscow, 1960) [in Russian].Google Scholar
  2. 2.
    Atmospheric Turbulence and Pollution Dispersion Modeling, Ed. by F. T. M. Newstadt and Kh. Van Don (Gidrometeoizdat, Leningrad, 1985) [Transl. from Engl.].Google Scholar
  3. 3.
    M. E. Berlyand, E. L. Genikhovich, and R. I. Onikul, “On the Calculation of the Atmosphere Pollution with Emissions from Power Plant Chimneys,” Trudy GGO, No. 158 (1964) [Trans. Main Geophysical Observatory, No. 158 (1964)].Google Scholar
  4. 4.
    M. I. Budyko, Climate Change (Gidrometeoizdat, Leningrad, 1974) [in Russian].Google Scholar
  5. 5.
    N. L. Byzova, Typical Characteristics of the Lower 300-m Atmospheric Layer from Measurements at the High-altitude Mast (Gidrometeoizdat, Moscow, 1982) [in Russian].Google Scholar
  6. 6.
    L. Yu. Visnapuu and V. V. Smirnov, “Studying the Gas Flow-Unipolar Ions-Aerosol Particle Systems,” Trudy IEM, No. 44(134) (1987) [Trans. Inst. Experimental Meteorol., No. 44 (134) (1987)].Google Scholar
  7. 7.
    E. K. Garger, “Calculation of Diffusion Characteristics of the Concentration Field of Weightless Pollution in the Surface Atmospheric Layer,” Trudy IEM, No. 29 (103)(1984) [Trans. Inst. Experimental Meteorol., No. 29 (103) (1984)].Google Scholar
  8. 8.
    Yu. A. Izrael, “An Efficient Way to Regulate the Global Climate is the Main Objective of the Solution of the Climate Problem,” Meteorol. Gidrol., No. 10 (2005) [Russ. Meteorol. Hydrol., No. 10 (2005)].Google Scholar
  9. 9.
    Yu. A. Izrael, I. I. Borzenkova, and D. A. Severov, “Role of Stratospheric Aerosols in Maintenance of the Present-day Climate,” Meteorol. Gidrol., No. 1 (2007) [Russ. Meteorol. Hydrol., No. 1, 32 (2007)].Google Scholar
  10. 10.
    N. K. Nikiforova and N. V. Tereb, “High-frequency Variations of the Total Ozone Content,” Meteorol. Gidrol., No. 1 (1991) [Meteorol. Hydrol., No. 1 (1991)].Google Scholar
  11. 11.
    A. V. Savchenko, V. V. Sminov, and A. D. Uvarov, “Dynamics of the Plume of Charged Aerosol Particles in the Surface Atmospheric Layer,” Trudy IEM, No. 51(142) (1989) [Trans. Inst. Experimental Meteorol., No. 51 (142) (1989)].Google Scholar
  12. 12.
    P. J. Crutzen, “Albedo Enhancement by Stratosphere Sulfur Injection: A Contribution to Resolve a Policy Dilemma?” Climate Change, 77 (2006).Google Scholar

Copyright information

© Allerton Press, Inc. 2009

Authors and Affiliations

  • Yu. A. Izrael
    • 1
  • V. M. Zakharov
    • 1
  • N. N. Petrov
    • 1
  • A. G. Ryaboshapko
    • 1
  • V. N. Ivanov
    • 2
  • A. V. Savchenko
    • 2
  • Yu. V. Andreev
    • 2
  • Yu. A. Puzov
    • 2
  • B. G. Danelyan
    • 3
  • V. P. Kulyapin
    • 4
  1. 1.Institute of Global Climate and EcologyRoshydromet and Russian Academy of SciencesMoscowRussia
  2. 2.Taifun Scientific Industrial AssociationObninsk, Kaluga oblastRussia
  3. 3.Central Aerological ObservatoryDolgoprudny, Moscow oblastRussia
  4. 4.v/ch (Military Unit)BerlinGermany

Personalised recommendations