Russian Electrical Engineering

, Volume 85, Issue 6, pp 389–394 | Cite as

Implementation of the real-time nonlinear dynamics prediction: Experimental research on location

Article
  • 34 Downloads

Abstract

A new point of view on nonlinear dynamics prediction with respect to pulse-energy converters is proposed. The technological sequence required for the prediction is considered by the example of a dc-dc buck converter.

Keywords

PWM converters prediction real time bifurcation phenomena practical application 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    De Gooijer, J.G. and Hyndman, R.J., 25 years of time series forecasting (a review), Int. J. Forecasting, 2006, vol. 22, pp. 443–473.CrossRefGoogle Scholar
  2. 2.
    Jelali, M., An overview of control performance assessment technology and industrial applications, Control Eng. Practice, 2006, vol. 14, pp. 441–466.CrossRefGoogle Scholar
  3. 3.
    Timmermann, A., Elusive return predictability, Int. J. Forecasting, 2008, vol. 24, pp. 1–18.CrossRefGoogle Scholar
  4. 4.
    Yalta, T.A. and Ojenal, O., On the importance of verifying forecasting results, Int. J. Forecasting, 2009, vol. 25.Google Scholar
  5. 5.
    Gandhi, A., Corrigan, T., and Parsa, L., Recent advances in modeling and online detection of stator interturn faults in electrical motors (a review), IEEE Trans. Industr. Electron., 2011, vol. 58, pp. 1564–1575.CrossRefGoogle Scholar
  6. 6.
    Kolokolov, Yu. and Monovskaya, A., Fractal approach, bifurcation poker and SUC-logic for nonlinear dynamics forecasting, Int. J. Bifurcation Chaos, 2013, vol. 23, no. 12.Google Scholar
  7. 7.
    Feigin, M.I. and Kagan, M.A., Emergencies as a manifestation of the effect of bifurcation memory in controlled unstable systems, Int. J. Bifurcation Chaos, 2004, vol. 14, no. 7.Google Scholar
  8. 8.
    Yu, D., Iu, H.H.C., Chen, E., Rodriguez, E., Alarcon, E., and El Aroudi, A., Instabilities in digitally controlled voltage-mode synchronous buck converter, Int. J. Bifurcation Chaos, 2012, vol. 22, no. 1.Google Scholar
  9. 9.
    Kolokolov, Yu.V. and Monovskaya, A.V., Stability-margin adjustment of the basis of trials for PWM converters, Russ. Electrical Eng., 2013, vol. 84, no. 3.Google Scholar
  10. 10.
    Kolokolov, Yu.V. and Monovskaya, A.V., Estimating the uncertainty of the behavior of a PWM power converter by analyzing a set of.experimental bifurcation diagrams, Int. J. Bifurcation Chaos, 2013, vol. 23, no. 4.Google Scholar
  11. 11.
    Kolokolov, Yu.V., Monovskaya, A.V., and Adjallah, K.H., PWM energy converters: fractal method of dynamics forecasting in practical application, IEEE Trans. Energy Convers., 2009, vol. 24, no. 2.Google Scholar
  12. 12.
    Najim, M., Modeling, Estimation and Optimal Filtering in Signal Processing, Wiley-ISTE, 2008.CrossRefMATHGoogle Scholar
  13. 13.
    Chen, G., Hsu, S.B., Huang, Yu., and Roque-Sol, M.A., The spectrum of chaotic time series (I): Fourier analysis, Int. J. Bifurcation Chaos, 2011, vol. 21, no. 5.Google Scholar
  14. 14.
    Chen, G., Hsu, S.B., Huang, Yu., and Roque-Sol, M.A., The spectrum of chaotic time series (II): wavelet analysis, Int. J. Bifurcation Chaos, 2011, vol. 21, no. 5.Google Scholar
  15. 15.
    Kolokolov, Yu. and Monovskaya, A., Detection of initiation of a bifurcation phenomenon in the dynamics of a PWM converter, Russ. Electr. Eng., 2013, vol. 84, no. 1.Google Scholar
  16. 16.
    Monti, A. and Poinci, F., Uncertainty evaluation under dynamic conditions using polynomial chaos theory, IEEE. Trans. Instrum. Measur., 2010, vol. 59, no. 11.Google Scholar
  17. 17.
    Kolokolov, Yu.V. and Monovskaya, A.V., Environmental safety of pulse energy conversion, Proc. 7th IEEE Int. Conf. on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Application, Berlin, Sept. 12–14, 2013.Google Scholar
  18. 18.
    Proske, D., Catalogue of Risks — Natural, Technical, Social and Health Risks, Springer, 2007.Google Scholar
  19. 19.
    Kolokolov, Yu.V. and Monovskaya, A.V., Computational researches: reasoning on evolution of technical and biological systems, Proc. 7th IEEE Int. Conf. on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Application, Berlin, Sept. 12–14, 2013.Google Scholar
  20. 20.
    Kolokolov, Yu.V. and Monovskaya, A.V., From modifications of experimental bifurcation diagrams to operating process stability margin, Int. J. Bifurcation Chaos, 2013, vol. 23, no. 7.Google Scholar
  21. 21.
    Cao, Q., Xu, L., Djidjeli, K., Price, W.G., and Twizell, E.H., Analysis of period-doubling and chaos of a non-symmetric oscillator with piecewise-linearity, Chaos, Solitons Fractals, 2001, vol. 12, no. 10, pp. 1917–1927.CrossRefMATHGoogle Scholar
  22. 22.
    Zhou, G., Xu, J., and Bao, B., Symmetrical dynamics of current-mode controlled switching dc-dc converters, Inf. J. Bifurcation Chaos, 2012, vol. 22, no. 1.Google Scholar
  23. 23.
    Berge, P., Pomeau, Y., and Vidal, Ch., Order within Chaos: towards a Deterministic Approach to Turbulence Paris: Willey, 1986.MATHGoogle Scholar
  24. 24.
    Kolokolov, Yu.V. and Monovskaya, A.V., Analysis of experimental bifurcation diagrams and physical essence of the “operating process stability margin” concept, Russ. Electr. Eng., 2013, vol. 84, no. 7.Google Scholar
  25. 25.
    Giaouris, D., Maity, S., Banerjee, S., Pickert, V., and Zahawi, B., Application of Filippov method for the analysis of subharmonic instability in dc-dc converters, Int. J. Cicruit Theory Appl., 2009, vol. 37, no. 8.Google Scholar
  26. 26.
    Rashid, M.H., Power Electronics Handbook, Acad. Press, 2001.Google Scholar
  27. 27.
    Erickson, R.W. and Maksimovich, D., Fundamentals of Power Electronics, Springer Sci. + Busin. Media, 2001.CrossRefGoogle Scholar
  28. 28.
    Kolokolov, Yu.V. and Monovskaya, A.V., Prediction problems in pulse energy transforming systems, Inf. Sistemy Tekhno., 2012, no. 3.Google Scholar
  29. 29.
    Lehman, B. and Bass, R.M., Switching frequency dependent averaged models for PWM DC-DC converters, IEEE Trans. Power Electron., 1996, vol. 11, no. 1.Google Scholar
  30. 30.
    Meleshin, V.I., The way to produce continuous linear model of power part of pulse transducer as a first stage for designing its dynamical properties, Elektrichestvo, 2002, no. 10.Google Scholar
  31. 31.
    Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2002.Google Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  1. 1.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations