Advertisement

Journal of Friction and Wear

, Volume 39, Issue 6, pp 462–468 | Cite as

Tribochemical Processes in a Phenol Formaldehyde Polymer Modified by Polyformaldehyde Copolymer

  • M. O. Panova
  • A. P. KrasnovEmail author
  • A. V. Naumkin
  • L. F. Klabukova
  • N. D. Kagramanov
  • D. I. Buyaev
  • V. A. Solov’eva
Article

Abstract

Thermal and tribochemical processes in a phenol formaldehyde composite reinforced with polyoxadiazole fibers and modified with finely dispersed particles of a polyformaldehyde copolymer were studied by mass spectrometry and X-ray photoelectron spectroscopy. Under thermal exposure to polyformaldehyde, the liberated formaldehyde sharply reduces the amount of phenol that is released. In the case of friction, polyformaldehyde is a bifunctional modifier. It forms a discrete surface, which helps reduce the coefficient of friction. The released products can play the role of a “tribochemical lubricant” and, at the same time, a cross-linking agent. Tribological tests of the modified composite showed a decrease in the coefficient of friction (from 0.20 to 0.18) compared with the original composite, and a significant (approximately 2-fold) decrease in the vibration amplitude of the friction coefficient.

Keywords:

friction tribochemical processes phenolformaldehyde polymer modifier of polyformaldehyde copolymer polyoxadiazole fibers mass spectrometry X-ray photoelectron spectroscopy 

Notes

ACKNOWLEDGMENTS

This work was supported by Presidium Project of Russian Academy of Sciences 1.16.

REFERENCES

  1. 1.
    Holmberg K. and Erdemir A., Influence of tribology on global energy consumption, costs and emissions, Friction, 2017, vol. 5, no. 3, pp. 263–284.CrossRefGoogle Scholar
  2. 2.
    Aderikha V.N., Krasnov A.P., Naumkin A.V., and Shapovalov V.A., Effects of ultrasound treatment of expanded graphite (EG) on the sliding friction, wear resistance, and related properties of PTFE-based composites containing EG, Wear, 2017, vols. 386–387, pp. 63–71.CrossRefGoogle Scholar
  3. 3.
    Wang J., Liu N., Yang J., Han G., and Yan F., Combined effect of chemical surface treatment of Kevlar fabric and PTFE fillers on the water-involved tribological performance of Kevlar fabric/phenolic laminate, Tribol. Trans., 2016, vol. 59, no. 2, pp. 385–390.CrossRefGoogle Scholar
  4. 4.
    Cai P., Wang T., and Wang Q., Effect of several solid lubricants on the mechanical and tribological properties of phenolic resin-based composites, Polym. Compos., 2015, vol. 36, no. 12, pp. 2203–2211.CrossRefGoogle Scholar
  5. 5.
    Osterle W. and Dmitriev A.I., The role of solid lubricants for brake friction materials, Lubricants, 2016, vol. 4, no. 1, p. 5.CrossRefGoogle Scholar
  6. 6.
    Konada N.K. and Suman K.N.S., Review of brake friction materials for future development, J. Mech. Mech. Eng., 2017, vol. 3, no. 1, p. 2.Google Scholar
  7. 7.
    Xu X., Huang S., Guan J., Hu J., and Peng, W., Grinding performance and self–lubrication mechanism of phenolic resin-bonded grinding wheel filled with inclusion complex of β-cyclodextrin and dialkyl pentasulfide, J. Mater. Process. Technol., 2015, vol. 221, pp. 163–171.CrossRefGoogle Scholar
  8. 8.
    Yuan J., Zhang Z., Yang M., Guo F., Men X., and Liu W., TiB2 reinforced hybrid-fabric composites with enhanced thermal and mechanical properties for high-temperature tribological applications, Tribol. Int., 2017, vol. 115, pp. 8–17.CrossRefGoogle Scholar
  9. 9.
    Bulyaev, D.I., Krasnov, A.P., Naumkin, A.V., Yudin, A.S., Afonicheva, O.V., Golub, A.Yu., Gorshkov, M.V., and Buzin, M.I., Effect of chemical structure of aramide and polyoxadiazole fibers on friction of organoplastics, J. Frict. Wear, 2016, vol. 37, no. 4, pp. 351–357.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • M. O. Panova
    • 1
    • 2
  • A. P. Krasnov
    • 1
    Email author
  • A. V. Naumkin
    • 1
  • L. F. Klabukova
    • 2
  • N. D. Kagramanov
    • 1
  • D. I. Buyaev
    • 3
  • V. A. Solov’eva
    • 1
  1. 1.Institute of Organoelement Compounds, Russian Academy of SciencesMoscowRussia
  2. 2.Russian Chemical-Technological UniversityMoscowRussia
  3. 3.OVITEK LLCMoscowRussia

Personalised recommendations