Journal of Friction and Wear

, Volume 39, Issue 6, pp 487–490 | Cite as

Percolation Model of Friction Wear for Carbon Plastics Based on Ultrahigh-Molecular-Weight Polyethylene

  • G. V. Kozlov
  • I. V. DolbinEmail author


A percolation model for two-component random materials, namely, the model of a random resistor grid (RRG) or an “ant limit” is used to describe the frictional characteristics of composites such as ultrahigh–molecular-weight polyethylene/carbon fiber. It is shown that the critical index of this model is determined by the structural parameters of the filler, whereas the RRG model describes equally well the results of frictional wear for both abrasive and fatigue mechanisms of wear.


wear intensity composite ultrahigh-molecular-weight polyethylene carbon fiber percolation critical index surface wear mechanism 



  1. 1.
    Vermant, J., Ceccia, S., Dovgovskij, M.K., Maffettone, P.L., and Macosko, C.W., Quantifying dispersion of layered nanocomposites via melt rheology, J. Rheol., 2007, vol. 51, no. 3, pp. 429–450.ADSCrossRefGoogle Scholar
  2. 2.
    Mikitaev, A.K. and Kozlov, G.V., Description of the degree of reinforcement of polymer/carbon nanotube nanocomposites in the framework of percolation models, Phys. Solid State, 2015, vol. 57, no. 5, pp. 974–977.ADSCrossRefGoogle Scholar
  3. 3.
    Gogoleva, O.V., Petrova, P.N., Popov, S.N., and Okhlopkova, A.A., Wear-resistant composite materials based on ultrahigh molecular weight polyethylene and basalt fibers, J. Frict. Wear, 2015, vol. 36, no. 4, pp. 301–305.CrossRefGoogle Scholar
  4. 4.
    Stanley, H.E., Fractal surfaces and the de Gennes termite model for a two-component random material, in Fractals in Physics, Amsterdam: North-Holland, 1986.Google Scholar
  5. 5.
    Bobryshev, A.N., Kozomazov, V.P., Babin, L.O., and Solomatov, V.I., Sinergetika kompozitsionnykh materialov (Synergetics of Composite Materials), Lipetsk: Orius, 1994.Google Scholar
  6. 6.
    Kozlov, G.V., Yanovsky, Yu.G., and Zaikov, G.E., Synergetics and Fractal Analysis of Polymer Composites Filled with Short Fibers, New York: Nova Science, 2011.Google Scholar
  7. 7.
    Metodika raschetnoi otsenki iznosostoikosti poeverkhnostei treniya detalei mashin (Calculation of Wear-Resistance of Friction Surfaces of Machine Parts), Moscow: Izd. Standartov, 1979.Google Scholar
  8. 8.
    Shklovskii, B.I. and Efros, A.L., Percolation theory and conductivity of strongly inhomogeneous media, Sov. Phys. Usp., 1975, vol. 18, no. 11, pp. 845–862.ADSCrossRefGoogle Scholar
  9. 9.
    Feder, E., Fractals, New York: Plenum, 1988.CrossRefzbMATHGoogle Scholar
  10. 10.
    Bartenev, G.M. and Lavrent’ev, V.V., Trenie i iznos polimerov (Friction and Wear of Polymers), Leningrad: Khimiya, 1972.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Berbekov Kabardino-Balkarian State UniversityNalchikRussia

Personalised recommendations