Advertisement

Journal of Friction and Wear

, Volume 35, Issue 5, pp 359–364 | Cite as

Tribological characteristics of (TiZrHfVNbTa)N coatings applied using the vacuum arc deposition method

  • S. N. GrigorievEmail author
  • O. V. Sobol
  • V. M. Beresnev
  • I. V. Serdyuk
  • A. D. Pogrebnyak
  • D. A. Kolesnikov
  • U. S. Nemchenko
Article

Abstract

The effect of the pressure of the nitrogen atmosphere during the formation of vacuum arc nitride coatings based on high entropy alloys of the Ti-Zr-Hf-V-Nb-Ta system on their structure, hardness, and tribotechnical characteristics is considered. It is shown that strong nitride-forming components lead to the dependence of the structural state and properties on the pressure of the nitrogen atmosphere during coating deposition. Deposition at a nitrogen pressure of 0.4 Pa results in the formation of a texture with the [111] axis when the applied bias potential is −70 V and when the bias potential is equal to −150 V the textural structure is biaxial ([111] and [110]) textures and high value of hardness of 51 GPa Along with that the highest value of wear resistance (under oxidizing-mechanical wear) is inherent to coatings formed under the pressure of nitrogen of 0.09 Pa. The strongest microdeformation of coating crystallites corresponds to this pressure.

Keywords

vacuum arc deposition method high entropic alloys refractory metal nitrides tribotechnical characteristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Myshkin, N.K. and Petrokovets, M.I., Trenie, smazka, iznos (Friction, Lubrication, Wear), Moscow: Fizmatlit, 2007.Google Scholar
  2. 2.
    Sovremennaya tribologiya: Itogi i perspektivy (Contemporary Tribology: Results and Prospects), Frolov, K.V., Ed., Moscow: LKI, 2008.Google Scholar
  3. 3.
    Sobol’, O.V., Andreev, A.A., Grigoriev, S.N., Gorban’, V.F., Volosova, M.A., Aleshin, S.V., and Stolbovoy, V.A., Physical characteristics, structure and stress state of vacuum-arc tin coating, deposition on the substrate when applying high-voltage pulse during the deposition, Probl. Atom. Sci. Technol., Ser.: Physics of Radiation Effect and Radiation Materials Science, 2011, no. 4, pp. 174–177.Google Scholar
  4. 4.
    Sobol’, O.V., Andreev, A.A., Grigoriev, S.N., Gorban’, V.F., Volosova, M.A., Aleshin, S.V., and Stolbovoi, V.A., Effect of high-voltage pulses on the structure and properties of titanium nitride vacuum-arc coatings, Metal Sci. Heat Treat., 2012, vol. 54, pp. 195–203.CrossRefGoogle Scholar
  5. 5.
    Sobol, O.V., Andreev, A.A., Grigoriev, S.N., Volosova, M.A., and Gorban’, V.F., Vacuum-arc multi-layer nanostructured TiN/Ti coatings: Structure, stress state, properties, Metal Sci. Heat Treat., 2012, vol. 54, pp. 28–33.CrossRefGoogle Scholar
  6. 6.
    Shumikhina, E.M. and Grigor’ev, S.N., Increasing of energoeffectivity of auxiliary equipment of devices for vacuum-plasma infliction of coating by automation means, Vestnik Mos. Gos. Tekhn. Univ. Stankin, 2010, no. 3, pp. 82–85.Google Scholar
  7. 7.
    Metel, A.S., Grigoriev, S.N., Melnik, Yu.A., and Bolbukov, V.P., Characteristics of a fast neutral atom source with electrons injected into the source through its emissive grid from the vacuum chamber, Instrum. Exp. Tech., 2012, vol. 55, no. 2, pp. 288–293.CrossRefGoogle Scholar
  8. 8.
    Andreev, A.A., Gorban’, V.F., Krapivka, N.A., Stolbovoi, V.A., Serdyuk, I.V., and Fil’chikov, V.E., Reproducibility of the single-phase structural state of the multielement high-entropy Ti-V-Zr-Hf system and related superhard nitrides formed by the vacuum-arc method, Tech. Phys. Lett., 2012, vol. 38, no. 7, pp. 616–619.CrossRefADSGoogle Scholar
  9. 9.
    Sobol’, O.V., Andreev, A.A., Voevodin, V.N., Gorban’, V.F., Grigor’ev, S.N., Volosova, M.A., and Serdyuk, I.V., Effect of shift and pressure nitrogen potential on structure-stressed state and properties of nitride coatings produced by evaporation of high-entropy alloys by vacuum-arc method, Vopr. At. Nauki Tekhn., Chist. Mater. Vakuum. Tekhn., 2014, no. 1 pp. 141–146.Google Scholar
  10. 10.
    Pogrebnjak, A.D. and Beresnev, V.M., Hard nanocomposite coatings, their structure and properties, in Nanocomposites. New Trends and Developments, 2012, Ch. 6, pp. 123–160.Google Scholar
  11. 11.
    Azarenkov, N.A., Sobol’, O.V., Beresnev, V.M., Pogrebnyak, A.D., Kolesnikov, D.A., Turbin, P.V., and Toryanik, I.N., Vacuum-plasma coatings based of the multielement nitrides, Metallofiz. Nov. Tekhnol., 2013, vol. 35, pp. 1061–1084. http://apps.webofknowl-edge.com/full-record.do?product=UA&search-mode=Refine&qid=13&SID=P1mgDWisgqVkqewvJYq&page=1&doc=1&cacheurlFromRightClick=no Google Scholar
  12. 12.
    Firstov, S.A., Gorban’, V.F., Krapivka, N.A., and Pechkovskii, E.P., Hardening and mechanical properties of as-cast high-entropy alloys, Komp. Nanostrukt., 2011, no. 2, pp. 5–20.Google Scholar
  13. 13.
    Pogrebnyak, A.D., Bondar’, O.V., Beresnev, V.M., Abadias, G., Chartier, P., Takeda, Y., Oyoshi, K., Sobol’, O.V., Andreev, A.A., Mukushev, B.A., and Yakushchenko, I.V., The effect of the deposition parameters of nitrides of high-entropy alloys (TiZrHfVNb)N on their structure, composition, mechanical and tribological properties, Journal of Superhard Materials, 2013, vol. 35, pp. 356–368.CrossRefGoogle Scholar
  14. 14.
    Serdyuk, I.V., Sobol, O.V., Andreev, A.A., Voevodin, V.N., Gorban, V.F., Grigor’ev, S.N., and Volosova, M.A., The bias potential and pressure nitrogen effect on structural stress on the structure-stressed state and properties of nitride coatings produced from high-entropy alloys by the vacuum arc technique, Probl. Atom. Sci. Technol., Ser.: Pure Mater. Vacuum Technol., 2014, no. 1, pp. 141–146.Google Scholar
  15. 15.
    Grigoriev, S.N., Melnik, Yu.A., Metel, A.S., Panin, V.V., and Prudnikov, V.V., A compact vapor source of conductive target material sputtered by 3-Kev ions at 0.05-Pa pressure, Instrum. Exp. Tech., 2009, vol. 52, no. 5, pp. 731–737.CrossRefGoogle Scholar
  16. 16.
    Andreev, A.A., Grigor’ev, S.N., Gorban’, V.F., Stolbovoi, V.A., and Shulaev, V.M., Vacuum-arc nanostructured TiN coatings, Vestn. Mos. Gos. Tekhn. Univ. Stankin, 2010, no. 3, pp. 14–17.Google Scholar
  17. 17.
    Metel, A.S., Grigoriev, S.N., Melnik, Yu.A., and Bolbukov, V.P., Broad beam sources of fast molecules with segmented cold cathodes and emissive grids, Instrum. Exp. Tech., 2012, vol. 55, no. 1, pp. 122–130.CrossRefGoogle Scholar
  18. 18.
    Khomenko, A.V. and Lyashchenko, Ya.A., Statistical theory of the boundary friction of atomically flat solid surfaces in the presence of a lubricant layer, Phys.-Usp., 2012, vol. 55, pp. 1008–1034.CrossRefADSGoogle Scholar
  19. 19.
    Grigoriev, S.N., Mandel, A.M., Oshurko, V.B., Solomakho, G.I., and Veselko, S.G., On the mechanism of friction reduction of nanosize multilayer coatings, Metallofiz. Nov. Tekhnol., 2013, vol. 35, no. 7, pp. 933–942.Google Scholar
  20. 20.
    Andreev, A.A., Volosova, M.A., Gorban, V.F., et al., The use of pulsed ion stimulation to modify the stressed structure state and mechanical properties of vacuumarc tin coatings, Metallofiz. Nov. Tekhnol., 2013, vol. 35, no. 7, pp. 953–963.Google Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  • S. N. Grigoriev
    • 1
    Email author
  • O. V. Sobol
    • 2
  • V. M. Beresnev
    • 3
  • I. V. Serdyuk
    • 4
  • A. D. Pogrebnyak
    • 5
  • D. A. Kolesnikov
    • 6
  • U. S. Nemchenko
    • 3
  1. 1.Moscow State University of Technology STANKINMoscowRussia
  2. 2.Khar’kovsii Polytechnic Institute National Technical UniversityKhar’kovUkraine
  3. 3.Karazin Khar’kov National UniversityKhar’kovUkraine
  4. 4.National Science Center Kharkov Institute of Physics and TechnologyKhar’kovUkraine
  5. 5.Sumi State UniversitySumiUkraine
  6. 6.Belgorod National Research UniversityBelgorodRussia

Personalised recommendations