Journal of Friction and Wear

, Volume 35, Issue 1, pp 55–66 | Cite as

Protection of specimens against friction and wear using titanium-based multicomponent nanocomposite coatings: A review

  • A. D. Pogrebnjak
  • A. V. Pshyk
  • V. M. Beresnev
  • B. R. Zhollybekov


A review of the experimental results of studying multicomponent nanocomposite protective coatings of various chemical compositions (TiAlCrYN, TiAlSiBN, TiAlSiCuN, CrTiAlSiN, and TiHfSiN/NbN/Al2O3) developed in recent years is presented. An analysis of the available data on the chemical composition, hardness, oxidation resistance, thermal stability, friction, wear, adhesion strength, and corrosion properties of nanocomposite coatings with high physicomechanical characteristics is carried out. The application of the nanocomposite coatings in industry is exemplified using the performance characteristics of drills made from a high-speed steel covered with a multicomponent protective coating.


multicomponent nanocomposite coatings magnetron sputtering mechanical and tribological characteristics oxidation resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Azarenkov, N.A., Sobol’, O.V., Pogrebnyak, A.D., Beresnev, V.M., Litovchenko, S.V., and Ivanov, O.N., Materialovedenie neravnovesnogo sostoyaniya modifitsirovannoi poverkhnosti: monografiya (Materials Science Aspects of Nonequilibrium State of Modified Surfaces: Monograph), Sumy: Sumskii Gos. Univ., 2012.Google Scholar
  2. 2.
    Bhushan, B., Nanotribology, nanomechanics and nanomaterials characterization, Phil. Trans. R. Soc., A., 2008, vol. 366, pp. 1351–1381.ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    Khomenko, A.V. and Lyashenko, Ya.A., Statistical theory of boundary friction of atomically smooth solid surfaces separated by lubricating film, Phys. Usp., 2012, vol. 55, pp. 1008–1034.ADSCrossRefGoogle Scholar
  4. 4.
    Khomenko, A.V. and Prodanov, N.V., Molecular dynamics of cleavage and flake formation during the interaction of a graphite surface with a rigid nanoasperity, Carbon, 2010, vol. 48, pp. 1234–1243.CrossRefGoogle Scholar
  5. 5.
    Pogrebnyak, A.D., Ponomarev, A.G., Shpak, A.P., and Kunitskii, Yu.A., Use of micro- and nanoprobes for analysis small-sized 3D materials, nanosystems, and nanoobjects, Phys. Usp., 2012, vol. 55, pp. 270–300.CrossRefGoogle Scholar
  6. 6.
    Koltunowicz, T.N., Zhukowski, P., Fedotova, V.V., Saad, A.M., and Fedotov, A.K., Hopping conductance in nanocomposites (Fe0.45Co0.45Zr0.10)x(Al2O3)1 − x manufactured by ion-beam sputtering of complex target in Ar + O2 ambient, Acta Phys. Polonica, A, 2011, vol. 120, no. 1, pp. 39–42.Google Scholar
  7. 7.
    Hosson, J.T. and Cavaleiro, A., Nanostructured Coatings (Nanostructure Science and Technology), Springer Science + Business Media, LLC, 2006.Google Scholar
  8. 8.
    Veprek, S., The search for novel, superhard materials, J. Vac. Sci. Technol., A., 1999, vol. 17, no. 5, p. 2401.ADSCrossRefGoogle Scholar
  9. 9.
    Musil, J., Hard and superhard nanocomposite coatings, Surf. Coat. Technol., 2000, vol. 125, pp. 322–330.CrossRefGoogle Scholar
  10. 10.
    Pogrebnyak, A.D., Shpak, A.P., Azarenkov, N.A., and Beresnev, V.M., Structure and properties of hard and superhard nanocomposite coatings, Phys. Usp., 2009, vol. 52, no. 1, pp. 29–54.ADSCrossRefGoogle Scholar
  11. 11.
    Pogrebnjak, A.D., Il’yashenko, M.V., Kaverin, M.V., et al., Physical and mechanical properties of the nanocomposite and combined Ti-N-Si/WC-Co-Cr/ and Ti-N-Si/(Cr3C2)75-(NiCr) coatings, J. Nano-Electron. Phys., 2009, no. 4, pp. 101–110.Google Scholar
  12. 12.
    Larkin, A.V., Fedotov, A.K., Fedotova, J.A., Koltunowicz, T.N., and Zhukowski, P., Temperature and frequency dependences of impedance real part in the FeCoZr-doped PZT nanogranular composites, Mater. Sci.-Poland, 2012, vol. 30, no. 2, pp. 75–81.ADSCrossRefGoogle Scholar
  13. 13.
    Helmersson, U., Todorova, S., Barnett, S.A., Sundgren, J.E., Markert, L.C., et al., Growth of singlecrystal TiN/VN strained-layer superlattices with extremely high mechanical hardness, J. of Appl. Phys., 1987, vol. 62, p. 481.ADSCrossRefGoogle Scholar
  14. 14.
    Veprek, S. and Reiprich, S., A concept for the design of novel superhard coatings, Thin Solid Films, 1995, vol. 268, pp. 64–71.ADSCrossRefGoogle Scholar
  15. 15.
    PalDey, S. and Deevi, S.C., Single layer and multilayer wear resistant coatings of (Ti,Al)N: a Review, Mater. Sci. Eng., A., 2003, vol. 342, pp. 58–79.CrossRefGoogle Scholar
  16. 16.
    Huq, M.Z. and Celis, L.B., Reproducibility of friction and wear results in ball-on-disc unidirectional sliding tests of TiN-alumina pairings, Wear, 1997, vol. 212, pp. 151–159.CrossRefGoogle Scholar
  17. 17.
    Vmcoille, E., Celis, J.P., and Roos, J.R., Dry sliding wear of tin based ternary PVD coatings, Wear, 1993, vol. 165, pp. 41–49.CrossRefGoogle Scholar
  18. 18.
    Mo, J.L., Zhu, M.H., Lei, B., et al., Comparison of tribological behaviours of AlCrN and TiAlN coatings deposited by physical vapor deposition, Wear, 2007, vol. 263, pp. 1423–1429.CrossRefGoogle Scholar
  19. 19.
    Zhang, W. and Smith, J.R., Stoichiometry and adhesion of Nb/Al2O3, Phys. Rev., B., 2000, vol. 61, pp. 16883–16889.ADSCrossRefGoogle Scholar
  20. 20.
    Liang, Sh.-Ch., Tsai, D.-Ch., Chang, Z.-Ch., et al., Thermally stable TiVCrZrHf nitride films as diffusion barriers in copper metallization, Electrochem. Solid-State Lett., 2012, vol. 15, no. 1, pp. H5–H8.CrossRefGoogle Scholar
  21. 21.
    Luo, Q., Zhou, Z., Rainforth, W.M., and Bolton, M., Effect of tribofilm formation on the dry sliding friction and wear properties of magnetron sputtered TiAlCrYN coatings, Tribol. Lett., 2009, vol. 34, no. 2, pp. 113–124.CrossRefGoogle Scholar
  22. 22.
    Shi, J., Muders, C.M., Kumar, A., Jiang, X., Pei, Z.L., Gong, J., and Sun, C., Study on nanocomposite Ti-Al-Si-Cu-N films with various Si contents deposited by cathodic vacuum arc ion plating, Appl. Surf. Sci., 2012, vol. 258, pp. 9642–9649.ADSCrossRefGoogle Scholar
  23. 23.
    Veprek, S., Mnling, H.D., Jilek, M., and Holubar, P., Avoiding the high-temperature decomposition and softening of (Al1 − xTix)N coatings by the formation of stable superhard nc-(Al1 − xTix)N/a-Si3N4 nanocomposite, Mater. Sci. Eng., A., 2004, vol. 366, pp. 202–205.CrossRefGoogle Scholar
  24. 24.
    Carvalho, S., Rebouta, L., Cavaleiro, A., Rocha, L.A., Gomes, J., and Alves, E., Microstructure and mechanical properties of nanocomposite (Ti, Si, Al)N coatings, Thin Solid Films, 2001, vols. 398–399, pp. 391–396.CrossRefGoogle Scholar
  25. 25.
    Chang, C.-L., Lee, J.-W., and Tseng, M.-D., Microstructure, corrosion and tribological behaviors of Ti-Al-Si-N coatings deposited by cathodic arc plasma deposition, Thin Solid Films, 2009, vol. 517, pp. 5231–5236.ADSCrossRefGoogle Scholar
  26. 26.
    Yu, D., Wang, C., Cheng, X., and Zhang, F., Microstructure and properties of Ti-Al-Si-N coatings prepared by hybrid PVD technology, Thin Solid Films, 2009, vol. 517, pp. 4950–4955.ADSCrossRefGoogle Scholar
  27. 27.
    Barshilia, H.C., Acharya, S., and Ghosh, M., Performance evaluation of TiAlCrYN nanocomposite coatings deposited using four-cathode reactive unbalanced pulsed direct current magnetron sputtering system, Vacuum, 2010, vol. 85, pp. 411–420.CrossRefGoogle Scholar
  28. 28.
    Musil, J., Vlcek, J., and Zeman, P., Hard amorphous nanocomposite coatings with oxidation resistance above 1000°C, Adv. Appl. Ceram., 2008, vol. 107, no. 3, pp. 148–154.CrossRefGoogle Scholar
  29. 29.
    Fox-Rabinovich, G.S., Yamamoto, K., Beake, B.D., et al., Emergent behavior of nano-multilayered coatings during dry high-speed machining of hardened tool steels, Surf. Coat. Technol., 2010, vol. 204, pp. 3425–3435.CrossRefGoogle Scholar
  30. 30.
    Lewis, D.B., Donohue, L.A., and Lembke, M., The influence of the yttrium content on the structure and properties of Ti1 − xyzAlxCryYzN PVD hard coatings, Surf. Coat. Technol., 1999, vol. 114, pp. 187–199.CrossRefGoogle Scholar
  31. 31.
    Chang Y.-Y. and Hsiao C.-Y. High temperature oxidation resistance of multicomponent Cr-Ti-Al-Si-N coatings, Surf. Coat. Technol., 2009, vol. 204, 992–996.CrossRefGoogle Scholar
  32. 32.
    Paternoster, C., Fabrizi, A., Cecchini, R., Kiryukhantsev-Korneev, Ph.V., Sheveyko, A., and Spigarelli, S., Thermal evolution and mechanical properties of hard Ti-Cr-B-N and Ti-Al-Si-B-N coatings, Surf. Coat. Technol., 2008, vol. 203, pp. 736–740.CrossRefGoogle Scholar
  33. 33.
    Komarov, F.F., Kamarou, A.A., Zukowski, P., Karwat, Cz., Sielanko, J., Kozak, Cz.M., and Kiszczak, K., Ion beam assisted deposition of metals layers using a novel one beam system, Vacuum, 2003, vol. 70, pp. 215–220.CrossRefGoogle Scholar
  34. 34.
    Zukowski, P., Komarov, F.F., Karwat, Cz., Kistczak, K., Kozak, Cz., et al., Depth distribution of elements in monoatomic and compound coatings deposited onto copper and silicon by IBAD, Vacuum, 2009, vol. 83, pp. 204–207.CrossRefGoogle Scholar
  35. 35.
    Bull, S.J., Rice-Evans, P.C., and Saleh, A., et al., Slow positron annihilation studies of defects in metal implanted tin coatings, Surf. Coat. Technol., 1997, vol. 91, pp. 7–12.CrossRefGoogle Scholar
  36. 36.
    Bull, S.J., Failure mode maps in the thin film scratch adhesion test, Tribol. Int., 1997, vol. 30, no. 7, pp. 491–498.CrossRefGoogle Scholar
  37. 37.
    Pogrebnyak, A.D., Beresnev, V.M., Kaverina, A.Sh., Shypylenko, A.P., Kolisnichenko, O.V., Oyoshi, K., Takeda, Y., Murakami, H., Kolesnikov, D.A., and Prozorova, M.S., Formation of superhard Ti-Hf-Si-N/NbN/Al2O3 multilayer coatings for highly effective protection of steel, Tech. Phys. Lett., 2013, vol. 39, no. 2, pp. 189–192.ADSCrossRefGoogle Scholar
  38. 38.
    Chang Y.-Y. and Hsiao C.-Y., High temperature oxidation resistance of multicomponent Cr-Ti-Al-Si-N coatings, Surf. Coat. Technol., 2009, vol. 204, pp. 992–996.CrossRefGoogle Scholar
  39. 39.
    Veprek, S., Maritza Veprek-Heijman, J.G., Industrial applications of superhard nanocomposite coatings, Surf. Coat. Technol., 2008, vol. 202, pp. 5063–5073.CrossRefGoogle Scholar
  40. 40.
    Kok, Y.N., Hovsepian, P.Eh., Luo, Q., Lewis, D.B., Wen, J.G., and Petrov, I., Influence of the bias voltage on the structure and the tribological performance of nanoscale multilayer C/Cr PVD coatings, Thin Solid Films, 2005, vol. 475, nos. 1–2, pp. 219–226.ADSCrossRefGoogle Scholar
  41. 41.
    Luo, Q., Robinson, G., Pittman, M., Howarth, M., Sim, W.M., Stalley, M.R., et al., Performance of nanostructured multilayer PVD coating TiAlN/VN in dry high speed milling of aerospace aluminium 7010-T7651, Surf. Coat. Technol., 2005, vol. 200, pp. 123–127.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  • A. D. Pogrebnjak
    • 1
  • A. V. Pshyk
    • 1
  • V. M. Beresnev
    • 2
  • B. R. Zhollybekov
    • 1
    • 3
  1. 1.Sumy State UniversitySumyUkraine
  2. 2.Kharkov National UniversityKharkovUkraine
  3. 3.Kara-Kalpak State UniversityNukusUzbekistan

Personalised recommendations