Journal of Friction and Wear

, Volume 32, Issue 2, pp 84–90 | Cite as

Tribological and physical-mechanical properties of protective coatings from Ni-Cr-B-Si-Fe/WC-Co-Cr before and after fission with a plasma jet

  • A. D. Pogrebnyak
  • S. N. Bratushka
  • M. V. Il’yashenko
  • N. A. Makhmudov
  • O. V. Kolisnichenko
  • Yu. N. Tyurin
  • V. V. Uglov
  • A. V. Pshik
  • M. V. Kaverin
Article

Abstract

A new type of coating is developed, which is a mechanical mixture of two different powders, namely, Ni-Cr-B-Si-Fe (PG-19N-01) and WC-Co (hard alloy). After the coatings from this mixture are deposited, their surface layer is fused with a plasma jet using an eroding electrode made of W. The additional treatment of the coatings with the plasma jet yields new phases and causes the redistribution of elements in the layer 45–60 μm deep; the percentage ratio of the phases WC, α-CoCr, Co, and Ni, as well as Cr3Ni2 + γ-(Fe, Ni) appearing during coating deposition also changes. The redistribution of elements occurs in the upper coating layer owing to fusion with the plasma jet. These processes yield variations in the physical-mechanical properties of the coatings, such as the hardness and elastic modulus; the coating wear rate decreases severalfold. It is found that with increasing load applied to the Berkovich pyramid the elastic modulus of the coating drops from 240 (at an indentation depth of 50 nm) to 175 GPa (at 150 nm). The elastic modulus of the substrate rises from 25 to 42 GPa. The coating hardness calculated from the loading-unloading curves is 15.3 to 10.6 GPa under increased load applied to the indentor. Specimens covered with the coating fused with the plasma jet in three passes demonstrate the lowest material wear.

Keywords

plasma coatings physical-chemical properties hardening fusion hardness elastic modulus wear rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Misaelides, P., Hatzidimitou, A., Noli, F., et al., Preparation, Characterization, and Corrosion Behavior of Protective Coatings on Stainless Steel Deposited by Plasma Detonation, Surf. Coat. Tech., 2004, nos. 180–181, pp. 290–296.Google Scholar
  2. 2.
    Pogrebnyak, A.D., Vasilyuk, V.V., Alontseva, D.L., et al., The Effect of Electron Beam Fusion on the Structure and Properties of Plasma Jet Sprayed Nickel Alloy Coatings Pis’ma Zh. Tekh. Fiz., 2004, vol. 30, no. 4, pp. 78–86 [Techn. Phys. Lett. (Engl. Transl.), vol. 30, no. 2, pp. 164–167].Google Scholar
  3. 3.
    Pogrebnyak, A.D., Kul’ment’eva, O.P., Kshnyakin, V.S., et al., Physicochemical State of a Coating of Stainless Steel SUS316L Applied on a Substrate of Low-Carbon Steel SS400, Fiz. Met. Metalloved., 2004, vol. 97, no. 5, pp. 44–52 [Phys. Met Metallogr. (Engl. Transl.), vol. 97, no. 5, pp. 470–478].Google Scholar
  4. 4.
    Pogrebnyak, A.D., Vasilyuk, V.V., Kravchenko, Yu.N., et al., Duplex Treatment of Nickel Alloy Deposited on Substrate from 3 Steel, Trenie Iznos, 2004, vol. 25, no. 1, pp. 71–78.Google Scholar
  5. 5.
    Pogrebnyak, A.D., Kravchenko, Yu.A., Alontseva, D.L., et al., Structure and Properties of Powder Coatings Deposited by High-Speed Plasma Jet, Trenie Iznos, 2005, vol. 26, no. 5, pp. 257–281.Google Scholar
  6. 6.
    Pogrebnyak, A.D., Kravchenko, Yu.N., Vasilyuk, V.V., et al., Structure and Properties of Ni-Cr Based Powder Coating after Melting by Concentrated Energy Flows Fiz. Khim. Obrab. Mater., 2005, no. 11, pp. 35–41.Google Scholar
  7. 7.
    Pogrebnyak, A.D., Il’yashenko, M.V., Kul’ment’eva, O.P., et al., Structure and Properties of a Hard Alloy Deposited on a Copper Substrate by Means of a Pulsed Plasma Spray Technology, Zh. Tekh. Fiz., 2001, vol. 71, no. 7, pp. 111–118 [Techn. Phys. (Engl. Transl.), vol. 46, no. 7, pp. 897–904].Google Scholar
  8. 8.
    Pogrebnjak, A.D., Bratushka, S.N., Boyko, V.I., et al., A Review of Mixing Processes in Ta/Fe and Mo/Fe Systems Treated by High Current Electron Beams, Nucl. Instrum. Methods Phys. Res., Sect. B., 1998, no. 145, pp. 373–390.Google Scholar
  9. 9.
    Pogrebnjak, A.D., Gritsenko, B.P., Pogrebnjak, N.A., et al., Electron-Beam-Induced Modification of Stoichiometry and Acceleration of Titanium Diffusion in Al2O3/Al/C Structures, Tech. Phys., 2006, no. 5, pp. 1060–1063.Google Scholar
  10. 10.
    Pogrebnyak, A.D., Rusimov, Sh.M., Alontseva, D.L., et al., Structure and Properties of Coatings on Ni Base Deposited Using a Plasma Jet before and after Electron Beam Irradiation, Vacuum, 2007, no. 10, pp. 1243–1251.Google Scholar
  11. 11.
    Pogrebnyak, A.D. and Tyurin, Yu.N., Modification of Material Properties and Coating Deposition Using Plasma Jets Usp. Fiz. Nauk, 2005, vol. 175, no. 5, pp. 515–544 [Phys.-Usp. (Engl. Transl.), 2005, vol. 48, no. 5, pp. 487–514].CrossRefGoogle Scholar
  12. 12.
    Pogrebnyak, A.D., Bratushka, S.N., Erdybaeva, N.S., et al., Properties of Ni-Cr Protective Coatings after Duplex Treatment, Fiz. Khim. Obrab. Mater., 2007, no. 6, pp. 37–47.Google Scholar
  13. 13.
    Kadyrzhanov, K.K., Komarov, F.F., Pogrebnyak, A.D., et al., Ionno-luchevaya i ionno-plazmennaya modifikatsiya materialov (Ion-Beam and Ion-Plasma Modification of Materials), Moscow: Izd. MGU, 2005.Google Scholar
  14. 14.
    Novikov, I.I. and Rozin, K.N., Kristallografiya i defekty kristallicheskoi reshetki (Crystallography and Defects of Crystallographic Lattice), Moscow: Metallurgiya, 1990.Google Scholar
  15. 15.
    Azarenkov, N.A., Beresnev, V.M., and Pogrebnyak, A.D., Struktura i svoistva zashchitnykh pokrytii i modifitsirovannykh sloev (Structure and Properties of Protective Coatings and Modified Layers of Materials), Kharkov: Kharkov Nat. Univ., 2007.Google Scholar
  16. 16.
    Svistunova, T.V., Corrosion-Resistant Alloys for Very Highly Corrosive Media, Metal. Term. Obrab. Met., 2005, no. 8, pp. 36–42 [Metal Sci. Heat Treat. (Engl. Transl.), vol. 47, nos. 7–8, pp. 383-389].Google Scholar
  17. 17.
    Friend, W.Z., Corrosion of Nickel and Alloys, New York: Wiley, 1980.Google Scholar
  18. 18.
    Shiemiev, A.P. and Svistunova, G.V., Korrozionnostoikie, zharostoikie i vysokoprochnye stali i splavy: Spravochnik (Corrosion-Resistant, Heat-Resistant and High-Strength Steels and Alloys: Handbook), Moscow: Internet inzhiniring, 2000.Google Scholar
  19. 19.
    Dub, S.N. and Novikov, N.V., Test of Solids on Hardness Sverkhtverdye materialy, 2004, no. 6, pp. 16–33.Google Scholar
  20. 20.
    Azarenkov, N.A., Beresnev, V.M., Pogrebnyak, A.D., et al., Nanomaterialy, nanopokrytiya, nanotekhnologii: Uchebnoe posobie (Nanomaterials, Nanocoatings, Nanotechnologies: Tutorial), Kharkov: Kharkov Nat. Univ., 2009.Google Scholar
  21. 21.
    Anishchik, V.M., Uglov, V.V., and Zlotskii, S.V., Ti-Cr-N Gradient Coatings: Structure and Mechanical Properties, Persp. Mater., 2004, no. 2, pp. 60–64.Google Scholar
  22. 22.
    Uglov, V.V., Cherenda, N.N., Anishchik, V.M., et al., Structure and Composition of Coatings Formed upon Material Treatment by Compression Plasma Flows, Fiz. Khim. Obrab. Mater., 2005, no. 4, pp. 28–32.Google Scholar
  23. 23.
    Gribkov, V.A., Grigor’ev, F.I., Kalin, B.A., and Yakushin, V.L., Perspektivnye radiatsionno-puchkovye tekhnologii obrabotki materialov (Perspective Radiation-Beam Technologies of Material Treatment), Moscow: Kruglyi god, 2001.Google Scholar
  24. 24.
    Kalin, B.A., Yakushin, V.L., and Pol’skii, V.I., Formation of Gradient Structure-Phase State in Metallic Materials upon Treatment by Pulsed Plasma Flows, in Mater. nauch.-praktich. konf. “Novye gradientnye i sloistye kompozity” (Proc. Sci.-Pract. Conf. “New Gradient and Layer Composites”), Moscow, 2006.Google Scholar
  25. 25.
    Yakushin, V.L., Kalin, B.A., Vasiliev, V.I., et al., Effect of Treatment by High-Temperature Pulsed Plasma Flows on Corrosion Resistance of Steels in Different Aggressive Media, Inzhenernaya fizika, 2007, no. 4, pp. 49–57.Google Scholar

Copyright information

© Allerton Press, Inc. 2011

Authors and Affiliations

  • A. D. Pogrebnyak
    • 1
    • 2
  • S. N. Bratushka
    • 1
    • 2
  • M. V. Il’yashenko
    • 1
    • 2
  • N. A. Makhmudov
    • 3
  • O. V. Kolisnichenko
    • 4
  • Yu. N. Tyurin
    • 4
  • V. V. Uglov
    • 5
  • A. V. Pshik
    • 1
    • 2
  • M. V. Kaverin
    • 1
    • 2
  1. 1.Sumy State UniversitySumyUkraine
  2. 2.Sumy Istititute for Surface ModificationSumyUkraine
  3. 3.Samarkand Branch of Tashkent University of InformaticsSamarkandUzbekistan
  4. 4.Paton Institute of Electric WeldingNational Academy of Sciences of UkraineKievUkraine
  5. 5.Belarus State UniversityMinskBelarus

Personalised recommendations