Journal of Friction and Wear

, Volume 31, Issue 5, pp 349–355 | Cite as

Tribotechnical and mechanical properties of Ti-Al-N nanocomposite coatings deposited by the ion-plasma method

  • V. M. Beresnev
  • A. D. Pogrebnyak
  • P. V. Turbin
  • S. N. Dub
  • G. V. Kirik
  • M. K. Kylyshkanov
  • O. M. Shvets
  • V. I. Gritsenko
  • A. P. Shipilenko


The possibility of formation of nanocrystalline Ti-Al-N coatings using the method of ion-plasma deposition is demonstrated. The mechanical and tribotechnical characteristics of the coatings in comparison with TiN coating are studied. Ti-Al-N nanocomposite coatings possess high hardness (35 GPa) and higher wear resistance and lower wear capacity as compared to TiN coating. For a grain size of 12–15 nm the nanostructural Ti-Al-N coating has the following elemental composition: Ti ≈ 60 at %, N ≈ 30 at %, Al ≈ 10 at %. The phase composition of the coating represents the solid solution (Ti, Al)N. For this elemental and phase composition and nanograin size maximal hardness and elasticity modulus of the coating are found.


nanocrystalline coating ion-plasma deposition RF voltage mechanical and tribotechical characteristics structure elemental composition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Danilin, B.S. and Syrchin, V.K., Magnetronnye raspylitel’nye sistemy (Magnetron Sputtering Systems), Moscow: Radio i svyaz’, 1982.Google Scholar
  2. 2.
    Andreev, A.A., Sablev, V.P., Shulaev, V.M., and Grigor’ev, S.N., Vakuumno-dugovye ustroistva i pokrytiya (Vacuum-Arc Devices and Coatings), Kharkov: NNTs “KhFTI”, 2005.Google Scholar
  3. 3.
    Syrkin, V.G., CSD metod—khimicheskoe parofaznoe osazhdenie (CSD Method—Chemical Vapor Phase Deposition), Moscow: Nauka, 2000.Google Scholar
  4. 4.
    Beresnev, V.M., Pogrebnyak, A.D., Shpak, A.V., Azarenkov, N.A., et al., Structure, Properties and Synthesis of Hard Nanocrystalline Coatings Deposited by Different Methods, Usp. Fiz. Met., 2007, no. 3, pp. 171–246.Google Scholar
  5. 5.
    Pogrebnyak, A.D., Shpak, A.V., Azarenkov, N.A., and Beresnev, V.M., Structure and Properties of Hard and Superhard Nanocomposite Coatings, Usp. Fiz. Nauk, 2009, vol. 179, no. 1, pp. 35–64.CrossRefGoogle Scholar
  6. 6.
    Sergeev, V.P., Fedorishcheva, M.V., Voronov, A.V., et al., Tribomechanical Properties and Structure of Ti1−xAlxN Nanocomposite Coatings, Izv. Tomsk. Politekhn. Univ., 2006, vol. 309, no. 2, pp. 149–153.Google Scholar
  7. 7.
    Levashov, E.A. and Shtanskii, D.V., Multifunctional Nanostructured Films, Usp. Khim., 2007, vol. 76, no. 5, pp. 501–509.Google Scholar
  8. 8.
    Veprek, S., Maritza, G.J., Veprek-Heijman, M.G.J., Karvankova, P., and Prochazka, J., Different Approaches to Superhard Coatings and Nanocomposites, Thin Solid Films, 2005, vol. 476, pp. 1–29.CrossRefADSGoogle Scholar
  9. 9.
    Musil, J. and Hruby, H., Superhard Nanocomposite Ti1 − xAlxN Films Prepared by Magnetron Sputtering, Thin Solid Films, 2000, vol. 65, pp. 104–109.CrossRefADSGoogle Scholar
  10. 10.
    Shpak, A.P., Cheremskoi, P.G., Kunitskii, Yu.A., and Sobol’, O.V., Klasternye i nanostrukturnye materialy (Cluster and Nanostructured Materials), Kiev: ID “Akademperiodika”, 2005, vol. 3.Google Scholar
  11. 11.
    Sobol’, O.V., Forming Mechanism of Condensates Phase-Structural State, Fiz. Inzhener. Poverkhn., 2008, vol. 6, no. 3, pp. 515–519.MathSciNetGoogle Scholar
  12. 12.
    Patscheider, J., Nanocomposite Hard Coatings for Wear Protections, MRS Bull., 2003, vol. 28, no. 3, pp. 180–183.Google Scholar
  13. 13.
    Tolok, V.T., Shets, O.M., Lymar’, V.F., Beresnev, V.M., Gritsenko, V.I., and Krivonos, M.G., RF Patent no. 1757249, MKI C23 c14/00/, Byull. Izobret., 1993, no. 18, p. 7.Google Scholar
  14. 14.
    Beresnev, V.M., Tolok, V.T., Shvets, O.M., et al., Micro-Nanolayered Coatings Formed by Vacuum-Arc Deposition Using the High-Frequency Discharge, Fiz. Inzhener. Poverkhn., 2006, vol. 4, nos. 1–2, pp. 93–97.Google Scholar
  15. 15.
    Beresnev, V.M., Shvets, O.M., and Belyaeva, T.N., Features of High-Frequency Energy Input into Metallic Plasma Flow, Fiz. Inzhener. Poverkhn., 2005, vol. 3, nos. 1–2, pp. 37–39.Google Scholar
  16. 16.
    Pelleg, J., Zevin, L.Z., Lungo, S., and Croitaru, N., Reactive-Sputter-Deposition TiN Films on Glass Substrates, Thin Solid Films, 1991, vol. 197, pp. 117–128.CrossRefADSGoogle Scholar
  17. 17.
    Azarenkov, N.A., Beresnev, V.M., and Pogrebnyak, A.D., Struktura i svoistva zashchitnykh pokrytii i modifitsirovannykh sloev (Structure and Properties of Protective Coatings and Modified Layers), Kharkov: Khrarkovskii natsional’nyi univ., 2007.Google Scholar

Copyright information

© Allerton Press, Inc. 2010

Authors and Affiliations

  • V. M. Beresnev
    • 1
  • A. D. Pogrebnyak
    • 2
    • 8
  • P. V. Turbin
    • 1
  • S. N. Dub
    • 3
  • G. V. Kirik
    • 4
  • M. K. Kylyshkanov
    • 5
  • O. M. Shvets
    • 6
  • V. I. Gritsenko
    • 7
  • A. P. Shipilenko
    • 2
    • 8
  1. 1.National Center for Physics and Technology, Ministry of Education of UkraineNational Academy of Sciences of UkraineKharkovUkraine
  2. 2.Sumy Institute for Surface ModificationSumyUkraine
  3. 3.V. Bakul Institute for Superhard MaterialsNational Academy of Sciences of UkraineKievUkraine
  4. 4.UkrRosMetal ConcernSumyUkraine
  5. 5.East Kazakhstan State Technical UniversityUst-KamenogorskKazakhstan
  6. 6.National Science Center Kharkov Institute of Physics and TechnologyNational Academy of Sciences of UkraineKharkovUkraine
  7. 7.V. N. Karazin Kharkov National UniversityKharkovUkraine
  8. 8.Sumy State UniversitySumyUkraine

Personalised recommendations