Coke and Chemistry

, Volume 62, Issue 8, pp 371–378 | Cite as

Comprehensive Evaluation of the Combustion Kinetic Characteristics of Owukpa Coal

  • Bemgba B. NyakumaEmail author
  • Olagoke Oladokun
  • Segun A. Akinyemi
  • Edo O. Ojoko
  • Gowon A. Jacob
  • Tuan Amran T. Abdullah
  • Habib Alkali
  • Ali H. Al-Shatri


Coal is a cheap and widely abundant fossil fuel that currently accounts for a significant share (35–40%) of the global energy mix. As a result, coal-fired electricity has catalyzed rapid socioeconomic growth and sustainable development worldwide. With the rapidly growing global energy demands, emerging economies like Nigeria need to address their widespread energy crises. Coal utilization for power generation is proposed as a panacea for the persistent power shortages, blackouts, and load shedding typically experienced in Nigeria. However, coal-fired power generation in Nigeria requires a comprehensive examination of the fuel properties, energy recovery potential, and emissions profiles of coal feedstocks, which is currently lacking in the literature. Therefore, this paper presents the comprehensive physicochemical, microstructure, mineralogical and thermal fuel properties of Owukpa (WKP) coal to evaluate its potential for future energy recovery and industrial applications. The results demonstrated that it contains high combustible elements, heating value (26.7 MJ/kg), and low potential for NOx and SOx emissions. Microstructural and mineralogical analyses revealed a mix of coarse-grained particles indicating the occurrence of carbonaceous and aluminosilicate minerals such as quartz, and kaolinite. Thermal properties of WKP revealed its low-rank coal (LRC) properties such as high thermal reactivity, which resulted from high mass loss (93.69 to 95.87%) and low residual mass (6.31 to 4.13%) during multiple heating rate TGA combustion. Kinetic analysis revealed that WKP is considerably reactive due to its low activation energy (Ea) and frequency factor (A), which ranged from Ea = 28.86 to 57.29 kJ/mol, whereas the A = 5.97 to 9.86 min–1 computed at high correlation R2 values of 0.97 to 1.0. The results showed that Owukpa (WKP) is a low-rank coal (LRC) with potential for electricity generation and other industrial applications.


combustion kinetics fuel characterization Owukpa coal benue Nigeria 



The authors wish to acknowledge the assistance of Mr Adakole Benjamin Aboje of Ehinehi Nigeria Enterprises Limited (Nigeria) for supplying the Owukpa (WKP) coal sample. The technical assistance of the Hydrogen and Fuel Cell Laboratory at the School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (Malaysia) is also gratefully acknowledged.


  1. 1.
    OECD Working Paper 2012: The Global Value of Coal, Paris: Int. Energy Agency, 2012.Google Scholar
  2. 2.
    Market Report Series: Coal 2017. Analysis and Forecasts to 2022, Paris: Int. Energy Agency, 2017, pp. 1–8.Google Scholar
  3. 3.
    World Energy Outlook 2013: How will Global Energy Markets Evolve to 2035? Paris: Int. Energy Agency, 2013.Google Scholar
  4. 4.
    Adoption of the Paris agreement: draft decision (COP21), Conf. Parties Twenty-First Session, Paris, November 30–December 11,2015, Paris: United Nations, 2015, p. 32.Google Scholar
  5. 5.
    Rowland, J., The path to clean coal, World Coal, 2014, vol. 11, pp. 12–17.Google Scholar
  6. 6.
    Burnard, K., and Ito, O., HELE coal technology roadmap, in IEA Clean Coal Centre Workshop on Advanced Ultra-Supercritical Coal-Fired Power Plants, Vienna, 2012.Google Scholar
  7. 7.
    Melikoglu, M., Clean coal technologies: a global to local review for Turkey, Energy Strategy Rev., 2018, vol. 22, pp. 313–319.CrossRefGoogle Scholar
  8. 8.
    Oboirien, B., North, B., Obayopo, S., Odusote, J., and Sadiku, E. Analysis of clean coal technology in Nigeria for energy generation, Energy Strategy Rev., 2018, vol. 20, pp. 64–70.CrossRefGoogle Scholar
  9. 9.
    Ohimain, E.I., Can Nigeria generate 30% of her electricity from coal? Int. J. Energy Power Eng., 2014, vol. 3, pp. 28–37.CrossRefGoogle Scholar
  10. 10.
    Nyakuma, B.B., Ojoko, E.O., Oladokun, O., Bello, A.A., Aboje, A.B., Ivase, T.J.-P., Al-Shatri, A.H., and Alkali, H., Fuel characterization and thermal degradation behavior of Owukpa coal, Petrol. Coal, 2018, vol. 60, pp. 1142–1148.Google Scholar
  11. 11.
    Nyakuma, B.B., Oladokun, O., Ojoko, E.O., Tanko, B.L., and Jauro, A., Physicochemical and oxidative thermal analysis of Nigerian lignite coals, Petrol. Coal, 2018, vol. 60, pp. 1207–1215.Google Scholar
  12. 12.
    Adedosu, T., Sonibare, O., Tuo, J., and Ekundayo, O., Aromatic hydrocarbons distribution in Nigerian coal and their geochemical significance, Energy Sources,Part A, 2010, vol. 33, pp. 145–155.Google Scholar
  13. 13.
    Wuyep, E.O. and Obaje, N.G., Petrographic evaluation of the ranks and technological applications of some coal deposits in the Anambra Basin and Middle Benue Trough of Nigeria, J. Earth Sci. Eng., 2012, vol. 2, pp. 220–234.Google Scholar
  14. 14.
    Sonibare, O., Jacob, D., and Foley, S., Quantitative estimation of major and trace elements in coals of the Benue Trough, Nigeria, Energy Sources,Part A, 2013, vol. 35, pp. 753–761.Google Scholar
  15. 15.
    Odeh, A.O., Exploring the potential of petrographic in understanding coal pyrolysis, Energy, 2015, vol. 87, pp. 555–565.CrossRefGoogle Scholar
  16. 16.
    Ayinla, H.A., Abdullah, W.H., Makeen, Y.M., Abubakar, M., Jauro, A., Yandoka, B.M.S., Mustapha, K.A., and Abidin, N.S.Z., Source rock characteristics, depositional setting and hydrocarbon generation potential of Cretaceous coals and organic-rich mudstones from Gombe Formation, Gongola Sub-basin, Northern Benue Trough, NE Nigeria, Int. J. Coal Geol., 2017, vol. 173, pp. 212–226.CrossRefGoogle Scholar
  17. 17.
    Ayinla, H.A., Abdullah, W.H., Makeen, Y.M., Abubakar, M., Jauro, A., Yandoka, B.M.S., and Abidin, N.S.Z., Petrographic and geochemical characterization of the Upper Cretaceous coal and mudstones of Gombe Formation, Gongola sub-basin, northern Benue trough Nigeria: Implication for organic matter preservation, paleodepositional environment and tectonic settings, Int. J. Coal Geol., 2017, vol. 180, pp. 67–82.CrossRefGoogle Scholar
  18. 18.
    Chukwu, M., Folayan, C., Pam, G., and Obada, D., Characterization of some Nigerian coals for power generation, J. Combust., 2016, vol. 2016, art. ID 9728278.CrossRefGoogle Scholar
  19. 19.
    Donahue, C.J. and Rais, E.A., Proximate analysis of coal, J. Chem. Educ., 2009, vol. 86, p. 222.CrossRefGoogle Scholar
  20. 20.
    Nyakuma, B., Jauro, A., Oladokun, O., Bello, A., Alkali, H., Modibo, M., and Abba, M., Physicochemical, mineralogical, and thermogravimetric properties of newly discovered Nigerian coals, Petrol. Coal, 2018, vol. 60, pp. 641–649.Google Scholar
  21. 21.
    Sengupta, P., Saikia, P.C., and Borthakur, P.C., SEM-EDX characterization of an iron-rich kaolinite clay, J. Sci. Res., 2008, vol. 67, pp. 812–818.Google Scholar
  22. 22.
    Garzanti, E., Andò, S., and Vezzoli, G., Settling equivalence of detrital minerals and grain-size dependence of sediment composition, Earth Planet. Sci. Lett., 2008, vol. 273, pp. 138–151.CrossRefGoogle Scholar
  23. 23.
    Bortnikov, N., Novikov, V., Savko, A., Boeva, N., Zhegallo, E., Bushueva, E., Krainov, A., and Dmitriev, D., Structural-morphological features of kaolinite from clayey rocks subjected to different stages of lithogenesis: evidence from the Voronezh anteclise, Lithol. Miner. Resour., 2013, vol. 48, pp. 384–397.CrossRefGoogle Scholar
  24. 24.
    Sellaro, R., Sarver, E., and Baxter, D., A standard characterization methodology for respirable coal mine dust using SEM-EDX, Resources, 2015, vol. 4, pp. 939–957.CrossRefGoogle Scholar
  25. 25.
    Michalski, J.R., Kraft, M.D., Sharp, T.G., Williams, L.B., and Christensen, P.R., Emission spectroscopy of clay minerals and evidence for poorly crystalline aluminosilicates on Mars from thermal emission spectrometer data, J. Geophys. Res.: Planets, 2006, vol. 111.Google Scholar
  26. 26.
    Reifenstein, A., Kahraman, H., Coin, C., Calos, N., Miller, G., and Uwins, P., Behavior of selected minerals in an improved ash fusion test: quartz, potassium feldspar, sodium feldspar, kaolinite, illite, calcite, dolomite, siderite, pyrite and apatite, Fuel, 1999, vol. 78, pp. 1449–1461.CrossRefGoogle Scholar
  27. 27.
    Nemanova, V., Abedini, A., Liliedahl, T., and Engvall, K., Co-gasification of petroleum coke and biomass, Fuel, 2014, vol. 117, pp. 870–875.CrossRefGoogle Scholar
  28. 28.
    Nyakuma, B., Jauro, A., Oladokun, O., Abdullah, T.A.T., and Uthman, H., Combustion kinetics of Shankodi–Jangwa coal, J. Phys. Sci., 2016, vol. 27, p. 1–12.CrossRefGoogle Scholar
  29. 29.
    Oladokun, O., Ahmad, A., Abdullah, T., Nyakuma, B., Bello, A.-H., and Al-Shatri, A., Multicomponent devolatilization kinetics and thermal conversion of Imperata cylindrica,Appl. Therm. Eng., 2016, vol. 105, pp. 931–940.CrossRefGoogle Scholar
  30. 30.
    Sonibare, O., Ehinola, O., Egashira, R., and KeanGiap, L., An investigation into the thermal decomposition of Nigerian coal, J. Appl. Sci., 2005, vol. 5, pp. 104–107.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • Bemgba B. Nyakuma
    • 1
    • 2
    Email author
  • Olagoke Oladokun
    • 2
  • Segun A. Akinyemi
    • 3
  • Edo O. Ojoko
    • 4
  • Gowon A. Jacob
    • 5
  • Tuan Amran T. Abdullah
    • 1
    • 2
  • Habib Alkali
    • 2
  • Ali H. Al-Shatri
    • 2
  1. 1.Hydrogen and Fuel Cell Laboratory, Institute of Future Energy, Universiti Teknologi MalaysiaJohor BahruMalaysia
  2. 2.School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi MalaysiaJohor BahruMalaysia
  3. 3.Environmental Remediation and Geopollution Group, Department of Geology, Ekiti State UniversityAdo-EkitiNigeria
  4. 4.School of Civil Engineering, Faculty of Engineering, Universiti Teknologi MalaysiaJohor BahruMalaysia
  5. 5.Department of Chemistry, Faculty of Science, Universiti Teknologi MalaysiaJohor BahruMalaysia

Personalised recommendations