Coke and Chemistry

, Volume 61, Issue 9, pp 354–359 | Cite as

Introduction of Cogeneration System at Horlivka Coke Plant

  • E. A. DanilinEmail author
  • A. V. Svirin
  • D. P. Khrobok
  • S. A. Lobov


Environmental problems of coke production are considered. The creation of a cogeneration system on the basis of excess coke-oven gas is proposed, with a unit for extraction and utilization of the heat from the coke battery’s smokestack gases. Operational data are presented for a cogeneration system with a condensation steam turbine and membrane-based chemical water treatment.


coke battery toxic emissions cogeneration system turbine generator condensation steam turbine membrane-based chemical water treatment smokestack gases heat-extraction unit waste-heat boiler 



  1. 1.
    Danilin, E.A., German, M.S., and Voitenko, B.I., Installation for heat neutralization and utilization of flue gases of coke oven batteries, Koks Khim., 2003, no. 12, pp. 36–39.Google Scholar
  2. 2.
    Gres, L.P., Okhrana okruzhayushchei sredy (Environmental Protection), Dnepropetrovsk: Dnepr-KhAN, 2002.Google Scholar
  3. 3.
    Fedak, S.P. and Trembach, T.F., Environmental measures to achieve technological emission standards for coke ovens, Ekol. Prom-st, 2013, no. 1, pp. 52–55.Google Scholar
  4. 4.
    Danilin, E.A., Lobov, A.A., and Svirin, A.V., Ecological and heat engineering advantages of a coke-oven power complex, Ekol. Prom-st, 2012, no. 2, pp. 60–64.Google Scholar
  5. 5.
    Vasil’ev, Yu.S., Malysh, A.S., and Borisenko, A.L., Implementation of technological standards for emissions from coke ovens and measures to achieve them, Uglekhim. Zh., 2010, nos. 3–4, pp. 104–110.Google Scholar
  6. 6.
    Karpov, A.V., The influence of the service life of coke oven batteries on the content of nitrogen oxides in the combustion products during heating of furnaces by coke gas, Koks Khim., 2003, no. 7, pp. 28–31.Google Scholar
  7. 7.
    Voitenko, B.I., Rubchevskii, V.N., Rudyka, V.I., and Zingerman, Yu.E., A new stage in the modernization of OAO Zaporozhkoks, Coke Chem., 2009, vol. 52, no. 4, pp. 132–136.CrossRefGoogle Scholar
  8. 8.
    Pyr’ikov, A.N., Vasnin, S.V., Baranbaev, B.M., et al., Zashchita okruzhayushchei sredy na koksokhimicheskikh predpriyatiyakh (Environmental Protection in Coke chemical Industry), Moscow: Intermet Inzhiniring, 2000.Google Scholar
  9. 9.
    Lobov, A.A., Danilin, E.A., Svirin, A.V., et al., Energy saving and environmental protection using coke batteries, Natsional’nyi ekologicheskii forum “Ekologiya promyshlennogo proizvodstva” (National Ecological Forum “Industrial Ecology”), Donetsk, 2012, pp. 31–34.Google Scholar
  10. 10.
    Abramovich, G.N., Prikladnaya gazovaya dinamika (Applied Gas Dynamics), Moscow: Nauka, 1991, part 1.Google Scholar
  11. 11.
    Fletcher, C., Computational Techniques for Fluid Dynamics, Vol. 1: Fundamental and General Techniques, New York: Springer-Verlag, 1988.Google Scholar
  12. 12.
    Prikhod’ko, A.A., Komp’yuternaye tekhnologii v aerogidrodinamike i teplomassoobmene (Computer Technologies in Aerohydrodynamics and Heat and Mass Transfer), Kyiv: Naukova Dumka, 2003.Google Scholar
  13. 13.
    Danilin, E.A., Lobov, A.A., and Svirin, A.V., Creating integrated systems on the basis of coke batteries: a promising option for the coke industry, Coke Chem., 2010, vol. 53, no. 6, pp. 236–241.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • E. A. Danilin
    • 1
    Email author
  • A. V. Svirin
    • 1
  • D. P. Khrobok
    • 1
  • S. A. Lobov
    • 2
  1. 1.KotloenergopromKharkovUkraine
  2. 2.Kharkov Aviation InstituteKharkovUkraine

Personalised recommendations