Advertisement

Coke and Chemistry

, Volume 61, Issue 8, pp 312–317 | Cite as

Methods of Predicting Vapor Cloud Explosions in Enclosed Spaces

  • S. G. Alexeev
  • L. V. Poluyan
  • E. S. Gur’ev
  • N. M. Barbin
INDUSTRIAL SAFETY
  • 2 Downloads

Abstract

For the example of 80 organic solvents, the method developed by the All-Russian Research Institute for Fire Protection (ARRIFP) and the Baker–Strehlow–Tang (BST) method for the prediction of vapor-cloud explosions (VCE) in enclosed spaces are compared, in terms of the specific safe volume of a building. A correlation is found between the results given by these methods. On introducing an energy correction (the ratio of the calorific value of the solvent to that of methane) and a correction factor of 1/4.47, the BST method (in the 2.5D configuration with low congestion) may be used to categorize production buildings in terms of explosion and fire safety.

Keywords:

solvent vapor cloud explosion (VCE) explosion pressure specific safe volume BST method 

Notes

REFERENCES

  1. 1.
    Grebenyuk, A.F., Korobchanskii, V.I., Vlasov, G.A., and Kaufman, S.I., Ulavlivanie khimicheskikh produktov koksovaniya (Catching of Chemical Emissions of Cocking), Donetsk: Vost. Izd. Dom, 2002, vol. 1.Google Scholar
  2. 2.
    Akinin, N.I., Raikova, V.M., and Khvostantseva, K.N., Influence of the amine structure on the combustion and explosion of vapor-air mixtures, Coke Chem., 2016, vol. 59, no. 12, pp. 478–482.CrossRefGoogle Scholar
  3. 3.
    Titushkin, V.A., Guryev, E.S., and Poluyan, L.V., Toxic hazards of coke production, Coke Chem., 2015, vol. 58, no. 12, pp. 487–491.CrossRefGoogle Scholar
  4. 4.
    Beschastnov, M.V., Promyshlennye vzryvy. Otsenka i preduprezhdenie (Industrial Explosions: Evaluation and Prevention), Moscow: Khimiya, 1991.Google Scholar
  5. 5.
    Kazennov, V.V., Dynamic processes of deflagration combustion in explosive buildings and places, Extended Abstract of Doctoral (Tech.) Dissertation, Moscow, 1997. http://dlib.rsl.ru/01000021126. Accessed March 7, 2018.Google Scholar
  6. 6.
    Akinin, N.I., Bulkhov, N.N., and Gerish, V.A., Statistical analysis of causes of accidents and injuries at hazardous industrial facilities, Pozharovzryvobezopasnost’, 2010, vol. 19, no. 10, pp. 53–55. http://fire-smi.ru/arhivpvb2010. Accessed February 20, 2018.Google Scholar
  7. 7.
    Akinin, N.I. and Babaitsev, I.V., Tekhnosfernaya bezopasnost’. Osnovy prognozirovaniya vzryvoopasnosti parogazovykh smesei (Technogenic Safety: Forecasting of Explosiveness of Vapor-Gas Mixtures), Dolgoprudnyi: Intellekt, 2016.Google Scholar
  8. 8.
    Akinin, N.I., Forecasting and prevention of explosions of flammable and explosive materials at hazardous production facilities of metallurgical and coke chemical plants, Extended Abstract of Doctoral (Tech.) Dissertation, Moscow, 2005. http://dlib.rsl.ru/01002737363. Accessed March 7, 2018.Google Scholar
  9. 9.
    Alexeev, S.G., Barbin, N.M., Avdeev, A.S., and Pishchal’nikov, A.V., About explosion risk of alcohol products, Pozharovzryvobezopasnost’, 2009, vol. 18, no. 2, pp. 20–23. https://elibrary.ru/item.asp?id=12772408. Accessed March 11, 2018.Google Scholar
  10. 10.
    Rudakov, O.B., Alexeev, S.G., Berdnikova, N.V., et al., Fire and explosion safety of the chromatographic analytical laboratory, Pozharovzryvobezopasnost’, 2012, vol. 21, no. 1, pp. 57–60. http://fire-smi.ru/arhiv-pozharovzrivobezopasnost-2012. Accessed March 11, 2018.Google Scholar
  11. 11.
    Alexeev, S.G., Rudakov, O.B., Cherepakhin, A.M., et al., Fire safety of research laboratories using liquid extraction and chromatography, Sorbtsionnye Khromatogr. Protsessy, 2012, vol. 12, no. 5, pp. 770–778. http://www.sorpchrom.vsu.ru/articles/20120516.pdf. Accessed March 11, 2018.Google Scholar
  12. 12.
    Alexeev, S.G., Barbin, N.M., Pishchal’nikov, A.V., et al., Comparative analysis of explosion hazard criteria of flammable liquids, Vestn. Voronezh. Gos. Univ., Ser.: Khim., Biol., Farm., 2014, no. 1, pp. 39–46. http://www.vestnik.vsu.ru/pdf/chembio/2014/01/2014-01-07.pdf. Accessed March 11, 2018.Google Scholar
  13. 13.
    Alexeev, S.G., Pishchal’nikov, A.V., and Kalach, A.V., Rating of explosive flammable liquids, Vestn. S.-Peterb. Univ. Gos. Protivopozharn. Sluzhby, 2014, no. 2, pp. 38–44. http://vestnik.igps.ru/wp-content/uploads/V62/5. pdf. Accessed March 11, 2018.Google Scholar
  14. 14.
    Alexeev, S.G., Pishchal’nikov, A.V., Barbin, N.M., et al., Comparative analysis of methods for determination of specific safe space of rooms with flammable liquids, Vestn. Gos. Tekhnol. Univ. im. V.G. Shukhova, 2014, no. 1, pp. 180–184. http://vestnik_rus.bstu.ru/arhiv. Accessed March 11, 2017.Google Scholar
  15. 15.
    Alexeev, S.G., Avdeev, A.S., Pishchal’nikov, A.V., and Barbin, N.M., The selection of the most dangerous flammable liquid depending on category of the rooms, Pozharovzryvobezopasnost’, 2013, vol. 22, no. 9, pp. 19–24. http:// fire-smi.ru/arhivpvb2013. Accessed March 12, 2018.Google Scholar
  16. 16.
    Alexeev, S.G., Barbin, N.M., Pishchal’nikov, A.V., and Kalach, A.V., Comparative analysis of the SP 12.13130.2009 and Karlsson–Quinta methods, Pozharovzryvobezopasnost’, 2013, vol. 22, no. 10, pp. 34–39. http://fire-smi.ru/arhivpvb2013. Accessed March 12, 2018.Google Scholar
  17. 17.
    Alexeev, S.G., Gur’ev, E.S., Poluyan, L.V., and Barbin, N.M., Predicting vapor cloud explosions in enclosed spaces, Coke Chem., 2017, vol. 60, no. 9, pp. 366–374.CrossRefGoogle Scholar
  18. 18.
    SP 12.13130.2009. Opredelenie kategorii pomeshchenii, zdanii i naruzhnykh ustanovok po vzryvopozharnoi i pozharnoi opasnosti (Manual on Implementation of SP 12.13130.2009 “Determination of Categories of Rooms, Buildings, and External Installations on Explosion and Fire Hazard”), Moscow: Vseross. Nauchno-Issled. Inst. Protivopozharn. Oborony, MChS Ross., 2009.Google Scholar
  19. 19.
    GOST (State Standard) R 12.3.047-98: Occupational Safety Standards System. Fire Safety of Technological Processes. General Requirements. Methods of Control, Moscow: Standartinform, 2014.Google Scholar
  20. 20.
    Smolin, I.M., Poletaev, N.L., Gordienko, D.M., et al., Psobie po primeneniyu SP 12.13130.2009 “Opredelenie kategorii pomeshchenii, zdanii i naruzhnykh ustanovok po vzryvopozharnoi i pozharnoi opasnosti” (Manual on Implementation of SP 12.13130.2009 “Determination of Categories of Rooms, Buildings, and External Installations on Explosion and Fire Hazard”), Moscow: Vseross. Nauchno-Issled. Inst. Protivopozharn. Oborony MChS Ross., 20142014.Google Scholar
  21. 21.
    Korol’chenko, A.Ya. and Zagorskii, D.O., Kategorirovanie pomeshchenii i zdanii po vzryvopozharnoi i pozharnoi opasnosti (The Categories of Premises and Buildings by Explosion and Fire Hazard), Moscow: Pozhnauka, 2010.Google Scholar
  22. 22.
    Baker Q.A., Tang M.J., Scheier E.A., and Silva G.J., Vapor cloud explosion analysis, Process Saf. Prog., 1996, vol. 15, no. 2, pp. 106–109.CrossRefGoogle Scholar
  23. 23.
    Baker Q.A., Doolittle C.M., Fizgerald G.A., and Tang M.J., Recent developments in the Baker-Strehlow VCE analysis methodology, Process Saf. Prog., 1998, vol. 17, no. 4, pp. 297–301.CrossRefGoogle Scholar
  24. 24.
    Tang M.J. and Baker Q.A., A new set of blast curves from vapor cloud explosion, Process Saf. Prog., 1999, vol. 18, no. 3, pp. 235–240.CrossRefGoogle Scholar
  25. 25.
    Tang M.J. and Baker Q.A., Comparison of blast curves from vapor cloud explosions, J. Loss Prevent. Process Ind., 2000, vol. 13, nos. 3–5, pp. 433–438.CrossRefGoogle Scholar
  26. 26.
    Pierorazio A.J., Thomas J.K., Baker Q.A., and Ketchum D.E., An update to the Baker–Strehlow–Tang vapor cloud explosion prediction methodology flame speed table, Process Saf. Prog., 2005, vol. 24, no. 1, pp. 59–65.CrossRefGoogle Scholar
  27. 27.
    API RP 752: Management of Hazards Associated with Location of Process Plant Permanent Buildings, Washington: API, 2009.Google Scholar
  28. 28.
    Baker W.E., Cox P.A., Westine P.S., et al., Explosion Hazards and Evaluation, Amsterdam: Elsevier, 1983.Google Scholar
  29. 29.
    van den Berg, A.C., The multi-energy method: a framework for vapor cloud explosion blast prediction, J. Hazard. Mater., 1985, vol. 12, no. 1, pp. 1–10.CrossRefGoogle Scholar
  30. 30.
    CPR 14E: Methods for the Calculation of Physical Effects, “Yellow Book,” van den Bosch, C.J.H. and Weterings, R.A.P.M., Eds., Hague: Gevaarlijke Stoffen, 2005.Google Scholar
  31. 31.
    Melani L., Sochet I., Rocourt X., and Jallais S., Review of methods to estimate the overpressure and impulse resulting from hydrogen explosion in a confined/obstructed volume, Proc. Int. Conf. on Hydrogen Safety (ICHS), Ajaccio, 2009. http://conference.ing.unipi.it/ichs2009/images/stories/papers/254.pdf. Accessed March 16, 2018.Google Scholar
  32. 32.
    Alexeev, S.G., Avdeev, A.S., Barbin, N.M., and Gur’ev, E.S., Evaluation of the explosion hazard of fuel-air mixtures using the example of kerosene of the RT brand. VII. BST methods, Pozharovzryvobezopasnost’, 2013, vol. 22, no. 12, pp. 23–30. http://fire-smi.ru/arhivpvb2013. Accessed March 12, 2018.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Science and Engineering Center “The Reliability and Safety of Large Systems and Machines”, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  2. 2.Ural State Fire Service Institute, Russian Ministry for Civil Defense, Emergency Situations and Disaster Relief (EMERCOM)YekaterinburgRussia
  3. 3.Ural Federal University Named after the First President of Russia B.N. YeltsinYekaterinburgRussia
  4. 4.Ural State Agrarian UniversityYekaterinburgRussia

Personalised recommendations