Skip to main content
Log in

Methods of Predicting Vapor Cloud Explosions in Enclosed Spaces

  • INDUSTRIAL SAFETY
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

For the example of 80 organic solvents, the method developed by the All-Russian Research Institute for Fire Protection (ARRIFP) and the Baker–Strehlow–Tang (BST) method for the prediction of vapor-cloud explosions (VCE) in enclosed spaces are compared, in terms of the specific safe volume of a building. A correlation is found between the results given by these methods. On introducing an energy correction (the ratio of the calorific value of the solvent to that of methane) and a correction factor of 1/4.47, the BST method (in the 2.5D configuration with low congestion) may be used to categorize production buildings in terms of explosion and fire safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Grebenyuk, A.F., Korobchanskii, V.I., Vlasov, G.A., and Kaufman, S.I., Ulavlivanie khimicheskikh produktov koksovaniya (Catching of Chemical Emissions of Cocking), Donetsk: Vost. Izd. Dom, 2002, vol. 1.

    Google Scholar 

  2. Akinin, N.I., Raikova, V.M., and Khvostantseva, K.N., Influence of the amine structure on the combustion and explosion of vapor-air mixtures, Coke Chem., 2016, vol. 59, no. 12, pp. 478–482.

    Article  Google Scholar 

  3. Titushkin, V.A., Guryev, E.S., and Poluyan, L.V., Toxic hazards of coke production, Coke Chem., 2015, vol. 58, no. 12, pp. 487–491.

    Article  Google Scholar 

  4. Beschastnov, M.V., Promyshlennye vzryvy. Otsenka i preduprezhdenie (Industrial Explosions: Evaluation and Prevention), Moscow: Khimiya, 1991.

    Google Scholar 

  5. Kazennov, V.V., Dynamic processes of deflagration combustion in explosive buildings and places, Extended Abstract of Doctoral (Tech.) Dissertation, Moscow, 1997. http://dlib.rsl.ru/01000021126. Accessed March 7, 2018.

  6. Akinin, N.I., Bulkhov, N.N., and Gerish, V.A., Statistical analysis of causes of accidents and injuries at hazardous industrial facilities, Pozharovzryvobezopasnost’, 2010, vol. 19, no. 10, pp. 53–55. http://fire-smi.ru/arhivpvb2010. Accessed February 20, 2018.

  7. Akinin, N.I. and Babaitsev, I.V., Tekhnosfernaya bezopasnost’. Osnovy prognozirovaniya vzryvoopasnosti parogazovykh smesei (Technogenic Safety: Forecasting of Explosiveness of Vapor-Gas Mixtures), Dolgoprudnyi: Intellekt, 2016.

  8. Akinin, N.I., Forecasting and prevention of explosions of flammable and explosive materials at hazardous production facilities of metallurgical and coke chemical plants, Extended Abstract of Doctoral (Tech.) Dissertation, Moscow, 2005. http://dlib.rsl.ru/01002737363. Accessed March 7, 2018.

  9. Alexeev, S.G., Barbin, N.M., Avdeev, A.S., and Pishchal’nikov, A.V., About explosion risk of alcohol products, Pozharovzryvobezopasnost’, 2009, vol. 18, no. 2, pp. 20–23. https://elibrary.ru/item.asp?id=12772408. Accessed March 11, 2018.

  10. Rudakov, O.B., Alexeev, S.G., Berdnikova, N.V., et al., Fire and explosion safety of the chromatographic analytical laboratory, Pozharovzryvobezopasnost’, 2012, vol. 21, no. 1, pp. 57–60. http://fire-smi.ru/arhiv-pozharovzrivobezopasnost-2012. Accessed March 11, 2018.

  11. Alexeev, S.G., Rudakov, O.B., Cherepakhin, A.M., et al., Fire safety of research laboratories using liquid extraction and chromatography, Sorbtsionnye Khromatogr. Protsessy, 2012, vol. 12, no. 5, pp. 770–778. http://www.sorpchrom.vsu.ru/articles/20120516.pdf. Accessed March 11, 2018.

  12. Alexeev, S.G., Barbin, N.M., Pishchal’nikov, A.V., et al., Comparative analysis of explosion hazard criteria of flammable liquids, Vestn. Voronezh. Gos. Univ., Ser.: Khim., Biol., Farm., 2014, no. 1, pp. 39–46. http://www.vestnik.vsu.ru/pdf/chembio/2014/01/2014-01-07.pdf. Accessed March 11, 2018.

  13. Alexeev, S.G., Pishchal’nikov, A.V., and Kalach, A.V., Rating of explosive flammable liquids, Vestn. S.-Peterb. Univ. Gos. Protivopozharn. Sluzhby, 2014, no. 2, pp. 38–44. http://vestnik.igps.ru/wp-content/uploads/V62/5. pdf. Accessed March 11, 2018.

  14. Alexeev, S.G., Pishchal’nikov, A.V., Barbin, N.M., et al., Comparative analysis of methods for determination of specific safe space of rooms with flammable liquids, Vestn. Gos. Tekhnol. Univ. im. V.G. Shukhova, 2014, no. 1, pp. 180–184. http://vestnik_rus.bstu.ru/arhiv. Accessed March 11, 2017.

  15. Alexeev, S.G., Avdeev, A.S., Pishchal’nikov, A.V., and Barbin, N.M., The selection of the most dangerous flammable liquid depending on category of the rooms, Pozharovzryvobezopasnost’, 2013, vol. 22, no. 9, pp. 19–24. http:// fire-smi.ru/arhivpvb2013. Accessed March 12, 2018.

  16. Alexeev, S.G., Barbin, N.M., Pishchal’nikov, A.V., and Kalach, A.V., Comparative analysis of the SP 12.13130.2009 and Karlsson–Quinta methods, Pozharovzryvobezopasnost’, 2013, vol. 22, no. 10, pp. 34–39. http://fire-smi.ru/arhivpvb2013. Accessed March 12, 2018.

  17. Alexeev, S.G., Gur’ev, E.S., Poluyan, L.V., and Barbin, N.M., Predicting vapor cloud explosions in enclosed spaces, Coke Chem., 2017, vol. 60, no. 9, pp. 366–374.

    Article  Google Scholar 

  18. SP 12.13130.2009. Opredelenie kategorii pomeshchenii, zdanii i naruzhnykh ustanovok po vzryvopozharnoi i pozharnoi opasnosti (Manual on Implementation of SP 12.13130.2009 “Determination of Categories of Rooms, Buildings, and External Installations on Explosion and Fire Hazard”), Moscow: Vseross. Nauchno-Issled. Inst. Protivopozharn. Oborony, MChS Ross., 2009.

  19. GOST (State Standard) R 12.3.047-98: Occupational Safety Standards System. Fire Safety of Technological Processes. General Requirements. Methods of Control, Moscow: Standartinform, 2014.

  20. Smolin, I.M., Poletaev, N.L., Gordienko, D.M., et al., Psobie po primeneniyu SP 12.13130.2009 “Opredelenie kategorii pomeshchenii, zdanii i naruzhnykh ustanovok po vzryvopozharnoi i pozharnoi opasnosti” (Manual on Implementation of SP 12.13130.2009 “Determination of Categories of Rooms, Buildings, and External Installations on Explosion and Fire Hazard”), Moscow: Vseross. Nauchno-Issled. Inst. Protivopozharn. Oborony MChS Ross., 20142014.

  21. Korol’chenko, A.Ya. and Zagorskii, D.O., Kategorirovanie pomeshchenii i zdanii po vzryvopozharnoi i pozharnoi opasnosti (The Categories of Premises and Buildings by Explosion and Fire Hazard), Moscow: Pozhnauka, 2010.

    Google Scholar 

  22. Baker Q.A., Tang M.J., Scheier E.A., and Silva G.J., Vapor cloud explosion analysis, Process Saf. Prog., 1996, vol. 15, no. 2, pp. 106–109.

    Article  CAS  Google Scholar 

  23. Baker Q.A., Doolittle C.M., Fizgerald G.A., and Tang M.J., Recent developments in the Baker-Strehlow VCE analysis methodology, Process Saf. Prog., 1998, vol. 17, no. 4, pp. 297–301.

    Article  CAS  Google Scholar 

  24. Tang M.J. and Baker Q.A., A new set of blast curves from vapor cloud explosion, Process Saf. Prog., 1999, vol. 18, no. 3, pp. 235–240.

    Article  CAS  Google Scholar 

  25. Tang M.J. and Baker Q.A., Comparison of blast curves from vapor cloud explosions, J. Loss Prevent. Process Ind., 2000, vol. 13, nos. 3–5, pp. 433–438.

    Article  Google Scholar 

  26. Pierorazio A.J., Thomas J.K., Baker Q.A., and Ketchum D.E., An update to the Baker–Strehlow–Tang vapor cloud explosion prediction methodology flame speed table, Process Saf. Prog., 2005, vol. 24, no. 1, pp. 59–65.

    Article  Google Scholar 

  27. API RP 752: Management of Hazards Associated with Location of Process Plant Permanent Buildings, Washington: API, 2009.

  28. Baker W.E., Cox P.A., Westine P.S., et al., Explosion Hazards and Evaluation, Amsterdam: Elsevier, 1983.

    Google Scholar 

  29. van den Berg, A.C., The multi-energy method: a framework for vapor cloud explosion blast prediction, J. Hazard. Mater., 1985, vol. 12, no. 1, pp. 1–10.

    Article  CAS  Google Scholar 

  30. CPR 14E: Methods for the Calculation of Physical Effects, “Yellow Book,” van den Bosch, C.J.H. and Weterings, R.A.P.M., Eds., Hague: Gevaarlijke Stoffen, 2005.

  31. Melani L., Sochet I., Rocourt X., and Jallais S., Review of methods to estimate the overpressure and impulse resulting from hydrogen explosion in a confined/obstructed volume, Proc. Int. Conf. on Hydrogen Safety (ICHS), Ajaccio, 2009. http://conference.ing.unipi.it/ichs2009/images/stories/papers/254.pdf. Accessed March 16, 2018.

  32. Alexeev, S.G., Avdeev, A.S., Barbin, N.M., and Gur’ev, E.S., Evaluation of the explosion hazard of fuel-air mixtures using the example of kerosene of the RT brand. VII. BST methods, Pozharovzryvobezopasnost’, 2013, vol. 22, no. 12, pp. 23–30. http://fire-smi.ru/arhivpvb2013. Accessed March 12, 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. G. Alexeev, L. V. Poluyan, E. S. Gur’ev or N. M. Barbin.

Additional information

Translated by Bernard Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexeev, S.G., Poluyan, L.V., Gur’ev, E.S. et al. Methods of Predicting Vapor Cloud Explosions in Enclosed Spaces. Coke Chem. 61, 312–317 (2018). https://doi.org/10.3103/S1068364X18080021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X18080021

Keywords:

Navigation