Advertisement

Coke and Chemistry

, Volume 61, Issue 4, pp 147–151 | Cite as

Utilizing Viscous Organic Coke-Plant Wastes

  • D. Yu. Bilets
  • P. V. Karnozhitskiy
  • P. P. Karnozhitskiy
Recycling Production Wastes
  • 10 Downloads

Abstract

Means of utilizing coke-plant wastes are investigated. Their environmental impact is evaluated. A new method is developed for using heavy coal tars to generate producer gas. The electrical converter employed permits regulation of the gas composition so as to increase the content of flammable components. Conditions preventing the formation of carcinogens such as benzo[a]pyrene in the producer gas are created, in laboratory conditions.

Keywords

gasification heavy coal tars lignite walnut shell producer gas electrical conversion benzo[a]pyrene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Golovko, M.B., Drozdnik, I.D., Miroshnichenko, D.V., and Kaftan, Yu.S., Predicting the yield of coking byproducts on the basis of elementary and petrographic analysis of the coal batch, Coke Chem., 2012, vol. 55, no. 6, pp. 204–214.CrossRefGoogle Scholar
  2. 2.
    Golovko, M.B., Miroshnichenko, D.V., and Kaftan, Yu.S., Predicting the coke yield and basic coking byproducts: an analytic review, Coke Chem., 2011, vol. 54, no. 9, pp. 331–338.CrossRefGoogle Scholar
  3. 3.
    Rubchevskii, V.N., Chernyshov, Yu.A., Ovchinnikova, S.A., et al., Predicting the yield of coke and coking byproducts, Coke Chem., 2009, vol. 52, no. 4, pp. 137–142.CrossRefGoogle Scholar
  4. 4.
    Miroshnichenko, D.V. and Golovko, M.B., Predicting the yield of coke and its byproducts on the basis of elementary and petrographic analysis, Coke Chem., 2014, vol. 57, no. 3, pp. 117–128.CrossRefGoogle Scholar
  5. 5.
    Danilov, A.B., Verdibozhenko, G.S., Drozdnik, I.D., et al., Predicting the yield of coke-plant products on the basis of petrographic analysis, Coke Chem., 2012, vol. 55, no. 11, pp. 419–422.CrossRefGoogle Scholar
  6. 6.
    Smola, V.I., PAU v okruzhayushchei srede: problemy i resheniya (Polycyclic Aromatic Hydrocarbons in the Environment: Problems and Solutions), Moscow: Poligraf Servis, 2013, part 1.Google Scholar
  7. 7.
    Bilets, D.Yu., Karnozhitskiy, P.V., and Borisenko, A.L., The estimation of the pitch interfacial layer thickness on the grain surface of carbon filler, Uglekhim. Zh., 2015, no. 2, pp. 27–30.Google Scholar
  8. 8.
    Kopytov, V.V., Gazifikatsiya kondensirovannykh topliv: retrospektivnyi obzor, sovremennoe sostoyanie del i perspektivy razvitiya (Gasification of Condensed Fuels: A Review, Current Status, and Prospective Development), Moscow: Agrorus, 2012.Google Scholar
  9. 9.
    Kim, K.H., Jahan, S.A., Kabir, E., and Brown, R.J.C., A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects, Environ. Int., 2013, vol. 60, pp. 71–80.CrossRefGoogle Scholar
  10. 10.
    Abdel-Shafy, H.I. and Mansour, M.S.M., A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation, Egypt. J. Petrol., 2015, vol. 25, pp. 107–123.CrossRefGoogle Scholar
  11. 11.
    Nagornii, Yu.S., Sokol, O.Yu., et al., Properties of heavy coal-tar products, Khim. Tekhnol. Biotekhnol. Ekol., 2011, no. 2 (48), pp. 243–246.Google Scholar
  12. 12.
    Altuntas, E. and Erkol, M., Physical properties of shelled and kernel walnuts as affected by the moisture content, Czech J. Food Sci., 2010, vol. 28, pp. 547–556.CrossRefGoogle Scholar
  13. 13.
    Maidl, B., Schmid, L.R., Jodl, H.G., and Petri, P., Tunnelbau im Sprengvortrieb, Berlin: Springer-Verlag Heidelberg, 1997.CrossRefGoogle Scholar
  14. 14.
    Eyubyuva, N.A., Aliev, S.M., and Sultanova, K.D., Pyrolysis of vegetative mass of Suglans regial L. and Corylus avellana L. in the presence and without Ca(OH)2, Khim. Rastit. Syr’ya, 2015, no. 1, pp. 197–203.Google Scholar
  15. 15.
    Martynova, A.Yu., Krasnozhememko, D.A., and Gordienko, M.A., The determination of the component composition of coke oven gas, Uglekhim. Zh., 2015, no. 2, pp. 34–38.Google Scholar
  16. 16.
    Zubilin, I.G. and Rudyka, V.I., Poluchenie sintez-gazov dlya proizvodstva ekologicheski chistykh motornykh topliv: teoriya i tekhnologiya (Production of Synthesis-Gases for Manufacturing of Environmentally Friendly Motor Fuels: Theory and Technology), Kharkov: Khar’k. Nats. Univ., 2002.Google Scholar
  17. 17.
    Slobodskoi, S.A., Elektrotermiya v novykh protsessakh uglekhimii: monografiya (Electrothermy in New Processes of Coal chemistry: Monograph), Kharkov: Khar’k. Politekh. Inst., 2013.Google Scholar
  18. 18.
    Lunaeva, O.V., Gorda, V.I., and Matlak, E.S., Preventing the release of toxic products in the thermal recycling of solid household waste, Nauk. Prats. Donetsk. Nats. Tekh. Univ., Ser. Khim. Khim. Tekhnol., 2005, vol. 174, no. 95, pp. 117–123.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • D. Yu. Bilets
    • 1
  • P. V. Karnozhitskiy
    • 1
  • P. P. Karnozhitskiy
    • 2
  1. 1.Kharkov Polytechnic InstituteKharkovUkraine
  2. 2.Giprokoks Design InstituteKharkovUkraine

Personalised recommendations