The Sine Representation of Centrally Symmetric Convex Bodies

  • R. H. AramyanEmail author
Stochastic and Integral Geometry


The problem of the sine representation for the support function of centrally symmetric convex bodies is studied. We describe a subclass of centrally symmetric convex bodies which is dense in the class of centrally symmetric convex bodies. Also, we obtain an inversion formula for the sine-transform.


Integral geometry convex body zonoid support function 

MSC2010 numbers

53C45 52A15 53C65 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.V. Ambartzumian, “Combinatorial integral geometry, metrics and zonoids”, Acta Appl.Math., 29, 3–27, 1987.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    A.D. Alexandrov, “On the theory of mixed volumes. New inequalities between mixed volumes and their applications”, Mat. Sb., 44, 1205–1238, 1937.Google Scholar
  3. 3.
    S. Alesker, “On GLn(R)–invariant classes of convex bodies”, Mathematika, 50, 57–61, 2003.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    R.H. Aramyan, “Zonoids with an equatorial characterization”, Applications of Mathematics (No. AM 333/2015) 61 (4), 413–422, 2016.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    R.H. Aramyan, “Generalized Radon transform on the sphere”, AnalysisOldenbourg, 30 (3), 271–284, 2010.MathSciNetzbMATHGoogle Scholar
  6. 6.
    R. Aramyan, “Solution of one integral equation on the sphere by methods of integral geometry”, Doklady Mathematics, 79 (3), 325–328, 2009.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    C. Berg, “Corps convexes et potentiels spheriques”, at.–Fyz.Medd. Danske Vid. Selsk., 37, 3–58, 1969.MathSciNetzbMATHGoogle Scholar
  8. 8.
    E.D. Bolker, “A class of convex bodies”, Trans. Amer.Math. Soc., 145, 323–345, 1969.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    W. Blaschke, Kreis und Kugel (de Gruyter, Berlin, 1956).CrossRefzbMATHGoogle Scholar
  10. 10.
    R.J. Gardner, Geometric Tomography (Cambridge Univ. Press, Cambridge, 2006.CrossRefzbMATHGoogle Scholar
  11. 11.
    P. Goodey, W. Weil, “Zonoids and generalizations”, Handbook of convex geometry, ed. P.M.Gruber and J.M. Wills, North Holland, Amsterdam, 1297–326, 1993.Google Scholar
  12. 12.
    H. Groemer, Geometric Applications of Fourier Series and Spherical Harmonics, Encyclopedia of Mathematics and its Applications, 61 (Cambridge Univ. Press, Cambridge, 1996).zbMATHGoogle Scholar
  13. 13.
    G. Maresch, F.E. Schuster, “The Sine–Transform of Isotropic Measures”, International Mathematics Research Notices, 4, 717–739, 2012.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    S. Helgason, The Radon Transform (Birkhauser, Basel, 1980).CrossRefzbMATHGoogle Scholar
  15. 15.
    F. Nazarov, D. Ryabogin, A. Zvavitch, “On the local equatorial characterization of zonoids and intersection bodies”, Advances in Mathematics, 217 (3), 1368–1380, 2008.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    K. Leichtweiz, KonvexeMengen (Deutscher Verlag derWissenschaften, Berlin, 1980).Google Scholar
  17. 17.
    R. Schneider, “Uber eine Integralgleichung in Theorie der konvexen Korper”, Math.Nachr., 44, 55–75, 1970.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    G.Yu. Panina, “The representation of an n–dimensional body in the form of a sum of (n–1)–dimensional bodies”, Journal of ContemporaryMathem. Analysis (ArmenianAcademy of Sciences), 23 (2), 91–103, 1988.MathSciNetzbMATHGoogle Scholar
  19. 19.
    R. Schneider, F.E. Schuster, “Rotation invariant Minkowski classes of convex bodies”, Mathematika 54, 1–13, 2007.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    W. Weil, “Blaschkes Problemder lokalen Charakterisierung von Zonoiden”, Arch.Math., 29, 655–659, 1977.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    W. Weil, R. Schneider, “Zonoids and related Topics”, in: P. Gruber, J. Wills (Eds), Convexity and its Applications, Birkhauser, Basel, 296–317, 1983.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Russian-Armenian UniversityYerevanArmenia
  2. 2.Institute of Mathematics of NAS RAYerevanArmenia

Personalised recommendations