Certain Classes of Analytic Functions Related to the Crescent-Shaped Regions

  • R. K. RainaEmail author
  • P. Sharma
  • J. Sokół
Real and Complex Analysis


In this paper, we study certain classes of analytic functions which satisfy a subordination condition and are associated with the crescent-shaped regions. We first give certain integral representations for the functions belonging to these classes and also present a relevant example. Making use of some known lemmas, we derive sufficient conditions for the functions to be in these classes. Some results on coefficient estimates are also obtained.


Analytic functions convex functions starlike functions subordination k-uniformly convex k-uniformly starlike 

MSC2010 numbers



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. K. Aouf, J. Dziok and J. Sokół, “On a subclass of strongly starlike functions”, Appl. Math. Letters, 24, 27–32, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    J. Dziok, R. K. Raina and J. Sokół, “On alpha–convex functions related to shell–like functions connected with Fibonacci numbers”, Appl.Math. Comput., 218, 966–1002, 2011.zbMATHGoogle Scholar
  3. 3.
    J. Dziok, R. K. Raina and J. Sokół, “Certain results for a class of convex functions related to a shell–like curve connected with Fibonacci numbers”, Comput. Math. Appl., 61 (9), 2605–2613, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    J. Dziok, R. K. Raina and J. Sokół, “On a class of starlike functions related to a shell–like curve connected with Fibonacci numbers”, Math. Comput.Modelling, 57, 1203–1211, 2013.MathSciNetCrossRefGoogle Scholar
  5. 5.
    J. Dziok, R. K. Raina and J. Sokół, “Differential subordinations and alpha–convex functions”, Acta Math. Scientia, 33B, 609–620, 2013.CrossRefzbMATHGoogle Scholar
  6. 6.
    P. L. Duren, Univalent Functions (Springer, New York, 1983).zbMATHGoogle Scholar
  7. 7.
    S. Kanas, “Alternative characterization of the class k–UCV and related classes of univalent functions”, SerdicaMath. J., 25, 341–350, 1999.MathSciNetzbMATHGoogle Scholar
  8. 8.
    S. Kanas and A. Wisniowska, “Conic regions and k–uniform convexity”, J. Comput. Appl.Math., 105, 327–336, 1999.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    S. Kanas and H. M. Srivastava, “Linear operators associated with k–uniformly convex functions”, Integral Transform. Spec. Funct., 9, 121–132, 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    S. Kanas and A. Wisniowska, “Conic domains and starlike functions”, Rev. Roumaine Math. Pures Appl., 45, 647–657, 2000.MathSciNetzbMATHGoogle Scholar
  11. 11.
    F. R. Keogh and E. P. Merkes, “A coefficient inequality for certain classes of analytic functions”, Proc.Amer. Math. Soc., 20, 8–12, 1969.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    W. Ma and D. A. Minda, “Unified treatment of some special classes of univalent functions”, Proceedings of Conf. on Complex Analysis, Eds. Z.Li et al, S. Int. Press, 157–169, 1994.Google Scholar
  13. 13.
    S. S. Miller and P. T. Mocanu, “On some classes of first order differential subordinations”, Michigan Math. J., 32, 185–195, 1985.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    S. S. Miller, P. T. Mocanu, Differential Subordinations, Theory and Applications (Dekker, Basel 2000).CrossRefzbMATHGoogle Scholar
  15. 15.
    Z. Nehari, ConformalMapping,McGraw–Hill, New York, 1952.Google Scholar
  16. 16.
    R. K. Raina and J. Sokół, “Some properties related to a certain class of starlike functions”, C. R. Acad. Sci. Paris, Ser. I, 353, 973–978, 2015.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    J. Sokół, “Coeffcient estimates in a class of strongly starlike functions”, Kyungpook Math. J., 49, 349–353, 2009.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.University of Agriculture and TechnologyUdaipurIndia
  2. 2.University of LucknowLucknowIndia
  3. 3.University of RzeszówRzeszówPoland

Personalised recommendations