Sharp Norm Estimates for Weighted Bergman Projections in the Mixed Norm Spaces

  • J. GonessaEmail author
Functional Analysis


In this paper, we show that the norm of the Bergman projection on Lp,q-spaces in the upper half-plane is comparable to csc(π/q). Then we extend this result to a more general class of domains, known as the homogeneous Siegel domains of type II.


Siegel domain Bergman space Bergman projection 

MSC2010 numbers

47B35 32A36 30H25 30H30 46B70 46M35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.L. Avetisyan, “Fractional integro–differentiation in harmonic mixed norm spaces on a half–space”, Comment. Math. Univ. Carolinae 42, 4, 691–709, 2001.MathSciNetzbMATHGoogle Scholar
  2. 2.
    D. Békollé, A. Bonami, G. Garrigos, C. Nana, M.M. Peloso, F. Ricci, “Lecture notes on Bergman projectors in tube domains over cones: an analytic and geometric viewpoint”, IMHOTEP J. Afr. Math. Pures Appl, 5 (1), 2004.Google Scholar
  3. 3.
    D. Debertol, “Besov spaces and the boundedness of weighted Bergman projections over symmetric tube domains”, Publi. Math., Barc, 49 (1), 21–72, 2005.MathSciNetzbMATHGoogle Scholar
  4. 4.
    M.M. Djrbashian, A.E. Djrbashian, “Integral representation for some classes of functions in a half–plane”, Dokl. Akad. Nauk SSSR 285, 547–550, 1985.MathSciNetzbMATHGoogle Scholar
  5. 5.
    M.M. Djrbashian, A.H. Karapetyan, “Integral representations for some classes of functions holomorphic in a Siegel domain”, J.Math.Anal.Appl., 179 (1), 91–109, 1993. See also Soviet Journal of Contemporary Mathematical Analysis, 22 (4), 86–93, 1987.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    M.M. Djrbashian, A.H. Karapetyan, “Integral representations in the generalized upper half–plane”, Soviet Math. Dokl., 41 (3), 430–433, 1990. See also Journal of ContemporaryMathematical Analysis, 25 (6), 1–28, 1990.MathSciNetzbMATHGoogle Scholar
  7. 7.
    T.M. Flett, “On the rate of growth of mean values of holomorphic and harmonic functions”, Pros. London Math. Soc., 20, 749–768, 1970.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    F. Ricci, M. Taibleson, “Boundary values of harmonic functions in mixed norm spaces and their atomic structure”, Annali Scuola Nor. Sup. Pisa, 4 (10), 1–54, 1983.MathSciNetzbMATHGoogle Scholar
  9. 9.
    S.G. Gindikin, “Analysis on homogeneous domains”, Russ. Math. Surv., 19, 1–83, 1964.MathSciNetCrossRefGoogle Scholar
  10. 10.
    J. Gonessa, “Espaces de type Bergman dans les domaines homogenes de Siegel de type II: Décomposition atomique et interpolation”, The` se de Doctorat–Ph. D, Universitéde YaoundéI, 2006.Google Scholar
  11. 11.
    J. Gonessa, K. Zhu, “A sharp norm estimate for weighted Bergman projections on the minimal ball”, New York. Math., 17A, 101–112, 2011.MathSciNetzbMATHGoogle Scholar
  12. 12.
    C. Nana, “Lp,q–Boundedness of Bergman projections in homogeneous Siegel domains of type II”, J. Fourier Anal Appl., 19, 997–1019, 2013.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    C. Nana, B. Trojan, “Lp–Boundedness of Bergman projections in tube domains over homogeneous cones”, Ann. Sc. Norm. Super. Pisa, Cl. Sci., X (5), 477–511, 2011.zbMATHGoogle Scholar
  14. 14.
    E.B. Vinberg, “The theory of convex homogeneous cones”, Tr.Moskov.Mat. Obsc., 12 359–388, 1963.zbMATHGoogle Scholar
  15. 15.
    K. Zhu, “A Sharp norm estimate of the Bergman projection on Lp spaces”, Contemporary Math., 404, 199–205, 2006.CrossRefzbMATHGoogle Scholar
  16. 16.
    K. Zhu, Spaces of Holomorphic Functions in the Unit Ball (Springer, New York, 2005).zbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Université de BanguiBanguiRépublique Centrafricaine

Personalised recommendations