Advertisement

On an effective solution of the Riemann problem for third order improperly elliptic equations

  • S. M. Ali RaeisianEmail author
Differential Equations
  • 50 Downloads

Abstract

The paper considers a boundary value problem for a third order improperly elliptic equation. A numerical method that reduces this problem into six uniquely solvable problems is developed, and the finite differences method is applied to solve the resulting problems.

Keywords

Improperly elliptic equation boundary value problem Riemann-Dirichlet type problem finite differences method 

MSC2010 numbers

35G45 35G15 35J25 35J57 65N06 65N20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. E. Tovmasyan, Non-Regular Differential Equations and Calculations of Electromagnetic Fields (World Scientific, Singapore, 1998).zbMATHCrossRefGoogle Scholar
  2. 2.
    J. W. Thomas, Numerical Partial Differential Equations Conservation Laws and Elliptic Equations (Springer, New York, 1991).Google Scholar
  3. 3.
    C. Grossmann, H.-G. Roos,M. Stynes, Numerical Treatment of PartialDifferential Equations (Springer, Berlin, 2007).CrossRefGoogle Scholar
  4. 4.
    Guo Chun Wen, Approximate Methods and Numerical Analysis for Elliptic Complex Equations (Gordon and Breach, Amsterdam, 1999).zbMATHGoogle Scholar
  5. 5.
    H. Begehr, “Boundary value problems in complex analysis”, I. Bol.Asoc.Mat.Venez., 12(1), 65–85, 2005, II. Bol.Asoc.Mat.Venez. 12 (2), 217–250, 2005.MathSciNetzbMATHGoogle Scholar
  6. 6.
    P. Peisker, “On the numerical solution of the first order biharmonic equation”, Math. Modelling and Numer. Analysis, 22(4), 655–676, 1988.MathSciNetzbMATHGoogle Scholar
  7. 7.
    Q. A. Dang, “Boundary operator method for approximate solution of biharmonic type equation”, Vietnam J. Math., 22(1–2), 114–120, 1994.zbMATHGoogle Scholar
  8. 8.
    Q. A. Dang, “Mixed boundary-domain operator in approximate solution of biharmonic type equation”, Vietnam J.Math., 26(3), 243–252, 1998.MathSciNetzbMATHGoogle Scholar
  9. 9.
    Q. A. Dang, “Iterative method for solving the Neumann boundary value problem for biharmonic type equation”, J.Comp.Appl.Math., 196, 634–643, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    P. Bjorstad, “Fast numerical solution of thew biharmonic Dirichlet problem on rectangles”, SIAM J. on Numerical Analysis, 20, 59–71, 1983.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Shidong Jiang, Bo Ren, P. Tsuji, Lexing Ying, Second Kkind Integral Equations for the First Kind Dirichlet Problem of the Biharmonic Equation in Three Dimensions (Elsevier, 2010).Google Scholar
  12. 12.
    I. N. Vekua, New Methods for Solving Elliptic Equations (J.Wiley, New York, 1967).zbMATHGoogle Scholar
  13. 13.
    J. Cohen, J. Gosselin, “The Dirichlet problem for the biharmonic equation in a C 1 domain in the plane”, Indiana Univ.Math.J., 32(5), 635–685, 1983.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    S. G. Mikhlin, Integral Equations (Pergamon Press, New York, 1957).zbMATHGoogle Scholar
  15. 15.
    L. Collatz, The Numerical Treatment of Differential Equations (Springer, New York, 1966).Google Scholar
  16. 16.
    A. A. Samarskii, Theory of Difference Schemes (Marcel Dekker, New York, 2001).zbMATHCrossRefGoogle Scholar
  17. 17.
    M. H. Koulaei, F. Toutounian, “Factored sparse approximate inverse of block tridiagonal and block pentadiagonal matrices”, AppliedMath. and Computation, 184, 223–234, 2007.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  1. 1.Institute ofMathematicsArmenian National Academy of SciencesYerevanArmenia

Personalised recommendations