Advertisement

Photoelectric Properties of Zinc Oxide Films Diffusion-Doped by Gallium and Lithium for Creation of Nonlinear Electric Elements

  • R. K. HovsepyanEmail author
  • N. R. Aghamalyan
  • E. A. Kafadaryan
  • G. G. Mnatsakanyan
  • A. A. Arakelyan
  • S. I. Petrosyan
  • G. R. Badalyan
Article
  • 8 Downloads

Abstract

A technique for local diffusion doping of the certain areas of the ZnO film of donor (Ga) and acceptor (Li) impurities has been developed to produce the films with the topological pattern of doping regions. The diffusion process, electrophysical and photoelectric properties of diffusion-doped samples of the planar MSM structures based on the Al–ZnO–Al, Al–ZnO:Ga–Al and Al–ZnO:Li–Al with the metallic aluminum as contacts are investigated. It is shown that the diffusion introduction of the impurity of gallium suppresses the photosensitivity, and the diffusion introduction of lithium into the ZnO films increases the photosensitivity as compared to the undoped areas of the same film.

Keywords

zinc oxide film donor acceptor diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Transparent Electronics: from Synthesis to Applications, A. Facchetti, T. Marks (Eds.), Wiley, 2010.Google Scholar
  2. 2.
    Barquinha, P., Martins, R., Pereira, L., and Fortunato, E., Transparent Oxide Electronics: from Materials to Devices, Wiley, 2012.CrossRefGoogle Scholar
  3. 3.
    Aghamalyan, N.R., Kafadaryan, E.A., Hovsepyan, R.K., and Petrosyan, S.I., Semicon. Sci. Technol., 2005, Vol. 20, p. 80.ADSCrossRefGoogle Scholar
  4. 4.
    Aghamalyan, N.R., Kafadaryan, E.A., and Hovsepyan, R.K., Effect of Lithium and Gallium Impurities on Opto- Electrical Properties of ZnO Films, Chapter 4 in: Trends in Semiconductor Science, New York: Nova Science Publishers, 2005, pp. 81–110.Google Scholar
  5. 5.
    Aghamalyan, N.R., Goulanian, E.Kh., Hovsepyan, R.K., Vardanyan, E.S., and Zerrouk, A.F., Phys. Stat. Sol (a), 2003, Vol. 199, p. 425.ADSCrossRefGoogle Scholar
  6. 6.
    Aghamalyan, N.R., Gambaryan, I.A., Goulanian, E.Kh., Hovsepyan, R.K., Kostanyan, R.B., Petrosyan, S.I., Vardanyan, E.S., and Zerrouk, A.F., Semicon. Sci. Technol., 2003, Vol. 18, p. 525.ADSCrossRefGoogle Scholar
  7. 7.
    Studenikin, S.A., Golego, N., and Cocivera, M., J. Appl. Phys., 2000, Vol. 87, p. 2413.ADSCrossRefGoogle Scholar
  8. 8.
    Zhang, S.B., Wei, S.H., and Zunger, A., Phys. Rev. B, 2001, Vol. 63, p. 752.Google Scholar
  9. 9.
    Yang, W., Hullavarad, S.S., Nagaraj, B., Takeuchi, I., and Sharma, R.P., Appl. Phys. Lett., 2003, Vol. 82, p. 3424.ADSCrossRefGoogle Scholar
  10. 10.
    Bube, R.H., Photoelectronic Properties of Semiconductors, Cambridge: Cambridge University Press, 1992.Google Scholar
  11. 11.
    Vai, A.T., Kuznetsov, V.L., Dilworth, J. R., and Edwards, P.P., J. Materials Chemistry C, 2015, Vol. 5, p. 206.Google Scholar
  12. 12.
    Ryabova, L.I. and Khokhlov, D.R., Phys. Usp., 2014, Vol. 57, p. 959.ADSCrossRefGoogle Scholar
  13. 13.
    Blank, T.V. and Goldberg, Yu.A., Semiconductors, 2007, Vol. 41, p. 1263.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • R. K. Hovsepyan
    • 1
    • 2
    Email author
  • N. R. Aghamalyan
    • 1
    • 2
  • E. A. Kafadaryan
    • 1
    • 2
  • G. G. Mnatsakanyan
    • 1
    • 2
  • A. A. Arakelyan
    • 1
    • 2
  • S. I. Petrosyan
    • 1
    • 2
  • G. R. Badalyan
    • 2
  1. 1.Russian–Armenian UniversityYerevanArmenia
  2. 2.Institute for Physical ResearchNAS of ArmeniaAshtarakArmenia

Personalised recommendations