Fabrication and Investigation of Photovoltaic Converters Based on Polycrystalline Silicon Grown on Borosilicate Glass

  • K. M. GambaryanEmail author
  • V. G. Harutyunyan
  • V. M. Aroutiounian
  • T. Boeck
  • R. Bansen
  • C. Ehlers


The microcrystalline Si layers with grain sizes of up to several tens of micrometers were grown. The physical vapor deposition (PVD), amorphous–liquid–crystalline (ALC) transition technique and a steady-state liquid phase epitaxy (SSLPE) are used for the fabrication of three different samples. The first sample under consideration was prepared first by deposition of a-Si onto glass substrates by PVD at room temperature, followed by heating from the front side to ~300°C and deposition of an indium metallic solvent. At the preparation of the second sample, an additional silicon layer with the thickness of 400 nm was deposited. A sample, when after that a c-Si was grown on the seed layer by SSLPE from indium solution is referred as a third sample. The resulting samples have a strong absorption edge in the mid-infrared region around 1960 cm−1. Six well-resolved oscillations with an average period of δB = 0.1214 T are revealed on the third sample’s magnetoresistance curve at gradually increasing of the magnetic field from zero up to 1.6 T. It is assumed that either Aharonov–Bohm effect or kinetic phenomena taking place in the grains boundaries at lateral current flow are responsible for those oscillations. Quantitative evaluations show that due to the strong absorption in mid-infrared region, enlargement of the photoresponse spectrum will occur and the efficiency of solar and other thermal energy conversion should be around ~10–15% higher than that of traditional PV cells based on silicon on glass structures.


microcrystalline grain silicon photovoltaics thermophotovoltaics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wedlock, B.D., Proceedings of IEEE, 1963, Vol. 51, p. 694.CrossRefGoogle Scholar
  2. 2.
    Wanlass, M.V., Ward, J.S., Emery, K.A., Al-Jassin, M.M., Jones, K.M., and Coutts, N.J., Solar Energy Materials and Solar Cells, 1996, vol. 41/42, p. 405.Google Scholar
  3. 3.
    Gevorkyan, V.A., Aroutiounian, V.M., Gambaryan, K.M., Kazaryan, M.S., Touryan, K.J., and Wanlass, M.W., Thin Solid Films, 2004, vol. 451–452, p. 124.Google Scholar
  4. 4.
    Carnel, L., Gordon, I., Van Gestel, D., Beaucarne, G., and Poortmans, J., Thin Solid Films, 2008, Vol. 16, p. 6839.ADSCrossRefGoogle Scholar
  5. 5.
    Green, M.A., Appl. Phys. A, 2009, Vol. 96, p. 153.ADSCrossRefGoogle Scholar
  6. 6.
    Gawlik, A., Plentz, J., Hoger, I., Andra, G., Schmidt, T., Bruckner, U., and Falk, F., Phys. Stat. Solidi (a), 2015, Vol. 212, p. 162.ADSCrossRefGoogle Scholar
  7. 7.
    Amkreutz, D., Haschke, J., Haring, T., Ruske, F., and Rech, B., Solar Energy Materials and Solar Cells, 2014, Vol. 123, p. 13.CrossRefGoogle Scholar
  8. 8.
    Bansen, R., Ehlers, C., Teubner, T., Böttcher, K., Gambaryan, K., Schmidtbauer, J., and Boeck, T., J. Photonics for Energy, 2016, Vol. 6, p. 025501.ADSCrossRefGoogle Scholar
  9. 9.
    Beaucarne, G., Duerinckx, F., Kuzma, I., Van Nieuwenhuysen, K., Kim, H., and Poortmans, J., Thin Solid Films, 2006, vol. 511–512, p. 533.Google Scholar
  10. 10.
    Capper, P. and Mauk, M., Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials, Chichester, UK: Wiley, 2007.CrossRefGoogle Scholar
  11. 11.
    Shi, Z., J. Mater. Sci. Electron., 1994, Vol. 5, p. 305.CrossRefGoogle Scholar
  12. 12.
    Silier, I., Gutjahr, A., Banhart, F., Konuma, M., Bauser, E., Schollkopf, V., and Frey, H., Mater. Lett., 1996, Vol. 28, p. 87.CrossRefGoogle Scholar
  13. 13.
    Bansen, R., Heimburger, R., Schmidtbauer, J., Teubner, T., Markurt, T., Ehlers, C., and Boeck, T., Appl. Phys. A, 2015, Vol. 119, p. 1577.ADSCrossRefGoogle Scholar
  14. 14.
    Heimburger, R., Desmann, N., Teubner, T., Schramm, H.-P., Boeck, T., and Fornari, R., Thin Solid Films, 2012, Vol. 520, p. 1784.ADSCrossRefGoogle Scholar
  15. 15.
    Yu, L. and Cabarrocas, P.R.I., Phys. Rev. B, 2010, Vol. 81, p. 085323.ADSCrossRefGoogle Scholar
  16. 16.
    Wagner, R.S., and Ellis, W.C., Applied Physics Letters, 1964, Vol. 4, p. 89.ADSCrossRefGoogle Scholar
  17. 17.
    Aharonov, Y. and Bohm, D., Phys. Rev., 1959, Vol. 115, p. 485.ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Gambaryan, K.M., Harutyunyan, V.G., Aroutiounian, V.M., Ai, Y., Ashalley, E., and Wang, Z.M., J. Physics D: Applied Physics, 2015, Vol. 48, p. 275302.CrossRefGoogle Scholar
  19. 19.
    Gambaryan, K.M., Aroutiounian, V.M., Harutyunyan, V.G., and Yeranyan, L.S., J. Physics: IOP Conf. Series, 2017, Vol. 829, p. 012021.Google Scholar
  20. 20.
    Fomin, V.M., Physics of Quantum Rings, Berlin: Springer, 2014.CrossRefzbMATHGoogle Scholar
  21. 21.
    Harutyunyan, V.G., Gambaryan, K.M., Aroutiounian, V.M., and Harutyunyan, I.G., Infrared Physics & Technology, 2015, Vol. 70, p. 12.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • K. M. Gambaryan
    • 1
    Email author
  • V. G. Harutyunyan
    • 1
  • V. M. Aroutiounian
    • 1
  • T. Boeck
    • 2
  • R. Bansen
    • 2
  • C. Ehlers
    • 2
  1. 1.Yerevan State UniversityYerevanArmenia
  2. 2.Leibniz Institute for Crystal Growth (IKZ)BerlinGermany

Personalised recommendations