Advertisement

Preparation and investigation of rare earth magnesium hexaaluminate solid solutions

  • K. L. Ovanesyan
  • A. S. KuzanyanEmail author
  • G. R. Badalyan
  • A. V. Yeganyan
  • R. V. Sargsyan
  • V. S. Kuzanyan
  • A. G. Petrosyan
  • V. S. Stathopoulos
Article

Abstract

Conditions of preparation, by the method of solid state reactions, of rare-earth hexaaluminates RE1−x−yMxM’yMgAl11O19 (RE = La, Sm; M, Mt’ = Gd, Yb, Lu, Y, Sc; x, y = 0, 0.15, 0.3), were investigated. For a number of compositions, high-degree single-phase products were obtained applying multi-step heat treatments in Ar/H2 atmosphere at 1650–1690°C. Intense (107) and (114) diffraction lines typical for the hexaaluminate phase have been observed in X-ray diffraction patterns. Studies of microstructure and of elemental composition showed that magnesium deficiency on the sample surface may reach some 20%, while composition in the bulk is more homogeneous and close to stoichiometric. Our estimations of structural homogeneity and thermal conductivity show that lanthanum hexaaluminates La1−x−yMxM’yMgAl11O19 with pair additives Gd-Yb, Gd-Y, Y-Yb, Y-Lu, Y-Sc (x = y = 0.15) and samarium hexaaluminates Sm1−x−yMxM’yMgAl11O19 with pair additives Gd-Yb, Y-Yb (x = y = 0.15), as well as Sm0.7Yb0.3MgAl11O19, may present interest as thermal barrier coatings.

Keywords

rare earth hexaaluminates solid state reactions thermal conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bansal, N.P. and Zhu, D., Surf. Coat. Technol, 2008, vol. 202, p. 2698.CrossRefGoogle Scholar
  2. 2.
    Choi, S.R., Bansal, N.P., and Zhu, D.M., Ceram. Eng. Sci. Proc., 2005, vol. 26, p. 11.CrossRefGoogle Scholar
  3. 3.
    Schaefer, G.W. and Gadow, R., Ceram. Eng. Sci. Proc., 1999, vol. 20, p. 291.CrossRefGoogle Scholar
  4. 4.
    Friedrich, C., Gadow, R., and Schimer, T., J. Therm. Spray. Technol., 2001, vol. 10, p. 592.ADSCrossRefGoogle Scholar
  5. 5.
    Friedrich, C., Gadow, R., and Lischka, M.H., Ceram. Eng. Sci. Proc., 2001, vol. 22, p. 375.CrossRefGoogle Scholar
  6. 6.
    Gadow, R. and Lischka, M., Surf. Coat. Technol., 2002, vol. 151, p. 392.CrossRefGoogle Scholar
  7. 7.
    Bansal, N.P. and Zhu, D., Mater. Sci. Eng.: A, 2007, vol. 459, p. 192.CrossRefGoogle Scholar
  8. 8.
    Chen, X.L., Zhang, Y.F., Zhong, X.H., et al., J. Eur. Ceram. Soc., 2010, vol. 30, p. 1649.CrossRefGoogle Scholar
  9. 9.
    Cao, X.Q., Zhang, Y.F., Zhang, J.F., et al., J. Eur. Ceram. Soc., 2008, vol. 28, p. 1979.CrossRefGoogle Scholar
  10. 10.
    Zhang, Y., Li, Q., Li, H., Cheng, Y., et al., J. Crystal Growth, 2008, vol. 310, p. 3884.ADSCrossRefGoogle Scholar
  11. 11.
    Chen, X., Zhao, Y., Huang, W., Maet, H., et al., J. Europ. Ceram. Soc., 2011, vol. 31, p. 2285.CrossRefGoogle Scholar
  12. 12.
    Zou, B., Khan, Z.K., Gu, L., Fanet, X., et al., Corrosion Science, 2012, vol. 62, p. 192.CrossRefGoogle Scholar
  13. 13.
    Chen, X., Zhao, Y., Gu, L., Zou, B., Wang, Y., and Cao, X., Corrosion Science, 2011, vol. 53, p. 2335.CrossRefGoogle Scholar
  14. 14.
    Chen, X., Zou, B., Zhao, Y., Wanget, Y., et al., J. Thermal Spray Technology, 2011, vol. 20, p. 1328.ADSCrossRefGoogle Scholar
  15. 15.
    Chen, X., Zhao, Y., Fan, X., Liu, Y., Zouet, B., et al., Surf. Coat. Technol., 2011, vol. 205, p. 3293.CrossRefGoogle Scholar
  16. 16.
    Chen, X., Gu, L., Zou, B., Wang, Y., and Cao, X., Surf. Coat. Technol., 2012, vol. 206, p. 2265.CrossRefGoogle Scholar
  17. 17.
    Liu, Z.-G., Ouyang, J.-H., Zhou, Y., and Zhu, R.-X., J. Europ. Ceram. Soc., 2013, vol. 30, p. 1649.Google Scholar
  18. 18.
    Liu, H-Z., Liu, Z.-G., Ouyang, J.-H., and Wang, Y-M., Appl. Phys. Lett., 2012, vol. 101, 161903.ADSCrossRefGoogle Scholar
  19. 19.
    Liu, Y., Jiang, B., Huang, Z., and Fang, M., Low thermal-conductivity GdMgAl11O19 high temperatureresistant ceramic material and preparation, China Patent, 200910243009.Google Scholar
  20. 20.
    Schönwelski, W., Haberey, F., Leckebusch, R., et al., J. Am. Ceram. Soc., 1986, vol. 69, p. 7.CrossRefGoogle Scholar
  21. 21.
    Park, B.-K., Lee, S.-S., Kang, J.-K., and Byeon, S.-H., Bull. Korean Chem. Soc., 2007, vol. 28, p. 1467.CrossRefGoogle Scholar
  22. 22.
    Zhu, D.M., Chen, Y.L., and Miller, R.A., Ceramic Engineering and Science Proceedings, 2003, vol. 24, p. 525.CrossRefGoogle Scholar
  23. 23.
    Shen, Y., Leckie, R.M., Levi, C.G., and Clarke, D.R., Acta Mater., 2010, vol. 58, p. 4424.CrossRefGoogle Scholar
  24. 24.
    Kittel, C., Introduction to Solid State Physics, New York: Wiley, 2005.Google Scholar
  25. 25.
    Ge, W., Zhang, H., Wang, J., Ran, D., Sun, S., et al., J. Cryst. Growth, 2005, vol. 282, p. 320.ADSCrossRefGoogle Scholar
  26. 26.
    Clarke, D.R., Surf. Coat. Technol., 2003, vol. 163–164, p. 67.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  • K. L. Ovanesyan
    • 1
  • A. S. Kuzanyan
    • 1
    Email author
  • G. R. Badalyan
    • 1
  • A. V. Yeganyan
    • 1
  • R. V. Sargsyan
    • 1
  • V. S. Kuzanyan
    • 1
  • A. G. Petrosyan
    • 1
  • V. S. Stathopoulos
    • 2
  1. 1.Institute for Physical ResearchNAS of ArmeniaAshtarakArmenia
  2. 2.General Department of Applied SciencesTechnological Educational Institute of Sterea ElladaPsahna Evias, ChalkidaGreece

Personalised recommendations