Advertisement

Bulletin of the Lebedev Physics Institute

, Volume 46, Issue 10, pp 314–318 | Cite as

Reflectance Modification in Nanostructured Silicon Layers with Gradient Porosity

  • G. K. Mussabek
  • D. Yermukhamed
  • Z. A. Suleimenova
  • R. B. Assilbayeva
  • V. A. Sivakov
  • I. N. ZavestovskayaEmail author
  • V. Yu. Timoshenko
Article

Abstract

A significant change in effective reflectance spectra of nanostructured porous silicon layers grown with different times of metal-assisted chemical etching is detected. The low reflectances at the level of 5–10% measured in the spectral range of 200–400 nm are explained by strong elastic scattering of light in combination with absorption in silicon nanostructures, while a reflectance increase in the range of 500–1800 nm, which is visually detected as a “white” layer appearance is associated with Mie scattering in silicon nanostructures with gradient porosity under conditions of weak optical absorption. The results obtained are discussed from the viewpoint of potential applications of “black” and “white” nanocrystalline silicon in photonics and sensorics.

Keywords

optical reflection light scattering photonics porous silicon nanocrystals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are grateful Prof. Zh. Zh. Zhanabaev and Prof. Zh. Utegulov for helpful discussions.

This study was supported by the Committee on Science of the Ministry of Education and Science of Republic Kazakhstan (grant no. AP05133366) and the Ministry of Science and Higher Education of the Russian Federation (State contracts nos. 16.2969.2017/4.6 and 16.7917.2017/8.9).

References

  1. 1.
    A. A. Ischenko, G. V. Fetisov, and L. A. Aslalnov, Nanosilicon: Properties, Synthesis, Applications, Methods of Analysis and Control (CRC Press, USA, 2014).CrossRefGoogle Scholar
  2. 2.
    D. Thomson, A. Zilkie, J. E. Bowers, et al., J. Opt. 18, 07300 (2016).CrossRefGoogle Scholar
  3. 3.
    V. Yu. Timoshenko, Phys. Sci. Technol. 4, 59 (2017).CrossRefGoogle Scholar
  4. 4.
    S. Wipperman, Y. He, M. Voros, and G. Galli, Appl. Phys. Rev. 3, 040807 (2016).ADSCrossRefGoogle Scholar
  5. 5.
    H. Savin, P. Repo, G. von Gastrow, et al., Nat. Nanotechnol. 10, 624 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    J.-K. Yoo, J. Kim, H. Lee, et al., Nanotechnol. 24, 424008 (2013).CrossRefGoogle Scholar
  7. 7.
    L. A. Osminkina, V. Sivakov, G. A. Mysov, et al., J. Biophotonics 5, 529 (2014).CrossRefGoogle Scholar
  8. 8.
    S. Dhanekar and S. Jain, Biosens. Bioelectron. 41, 54 (2013).CrossRefGoogle Scholar
  9. 9.
    Zh. Huang, N. Geyer, P. Werner, et al., Adv. Mater. 23, 285 (2011).CrossRefGoogle Scholar
  10. 10.
    M.-L. Zhang, K.-Q. Peng, X. Fan, et al., J. Phys. Chem. C 112, 4444 (2008).CrossRefGoogle Scholar
  11. 11.
    H. Han, Zh. Huang, and W. Lee, Nano Today 9, 271 (2014).CrossRefGoogle Scholar
  12. 12.
    A. Ghafarinazari and M. Mozafari, J. Alloys Compd. 616, 442 (2014).CrossRefGoogle Scholar
  13. 13.
    B. Fazio, P. Artoni, M. A. Iati, et al., Light: Sci. Appl. 5, e16062 (2016).CrossRefGoogle Scholar
  14. 14.
    X. Li and P. W. Bohn, Appl. Phys. Lett. 77, 2572 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    L. A. Osminkina, K. A. Gonchar, V. S. Marshov, et al., Nanoscale Res. Lett. 7, 524 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    G. Brönstrup, F. Garwe, A. Csaki, et al., Phys. Rev. B 84, 125432 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    Sh. Kato, Y. Kurokawa, Y. Watanabe, et al., Nanoscale Res. Lett. 8, 216 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    L. U. Vinzons, L. Shu, S. Yip, et al., Nanoscale Res. Lett. 12, 385 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    G. K. Mussabek, V. Yu. Timoshenko, K. K. Dikhanbayev, et al., Rec. Contr. Phys. 45, 14 (2013).Google Scholar
  20. 20.
    B. Franta, E. Mazur, and S. K. Sundaram, Int. Mat. Rev. 63, 227 (2018).CrossRefGoogle Scholar
  21. 21.
    E. Gross, D. Kovalev, N. Kuenzner, et al., Proc. SPIE 5222, 67 (2003).ADSCrossRefGoogle Scholar
  22. 22.
    V. Yu. Timoshenko, Th. Dittrich, V. Lysenko, et al., Phys. Rev. B 64, 085314 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • G. K. Mussabek
    • 1
    • 2
  • D. Yermukhamed
    • 1
  • Z. A. Suleimenova
    • 1
  • R. B. Assilbayeva
    • 3
  • V. A. Sivakov
    • 4
  • I. N. Zavestovskaya
    • 2
    • 5
    Email author
  • V. Yu. Timoshenko
    • 2
    • 5
    • 6
  1. 1.Al-Farabi Kazakh National UniversityAlmatyKazakhstan
  2. 2.Institute of Engineering Physics for BiomedicineNational Research Nuclear University “MEPhI”MoscowRussia
  3. 3.Yessenov Caspian State University of Technology and EngeeneringAktayKazakhstan
  4. 4.Leibniz Institute of Photonic TechnologyJenaGermany
  5. 5.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  6. 6.Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations