Advertisement

Bulletin of the Lebedev Physics Institute

, Volume 46, Issue 7, pp 238–242 | Cite as

Impurity- and defect-related luminescence of ZnSe:Fe at Low Temperatures

  • A. A. PruchkinaEmail author
  • D. F. Aminev
  • V. V. Ushakov
  • S. I. Chentsov
  • A. A. Gladilin
  • V. S. Krivobok
  • E. E. Onischenko
  • V. P. Kalinushkin
Article
  • 5 Downloads

Abstract

Polycrystalline zinc selenide is doped with an iron impurity to a concentration of ~1019 cm−3 in a zinc vapor atmosphere by the thermal diffusion method, and the distribution profile of optically active iron Fe2+ is obtained. The effect of the Fe2+ concentration on impurity-and defect-related ZnSe luminescence spectra at low temperatures is determined. In the range of 1.28—1.31 eV, a luminescence line with a decay time of ~0.341 ms is detected, with its intensity increasing in regions with Fe2+ concentration close to the maximum one. The line is attributed to the luminescence center arising due to the Fe2+ interaction with a background impurity or defect in ZnSe.

Keywords

ZnSe impurity Fe luminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was supported by the Russian Foundation for Basic Research (project no. 19-32-70045, sections 2, 3) and the Russian Science Foundation (project no. 17-72-10265, section 4).

References

  1. 1.
    S. Mirov, V. Fedorov, I. Moskalev, et al., Laser Photonics Rev. 4(1), 21 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    J. Kernal, V. Fedorov, A. Gallian, S. Mirov, and V. Badikov, Opt. Express 13, 10608 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    N. O. Kovalenko, A. K. Kapustnik, A. S. Gerasimenko, et al., J. Opt. Technol. 83, 397 (2016).CrossRefGoogle Scholar
  4. 4.
    M. P. Frolov, Yu. V. Korostelin, I. Kozlovsky, et al., Opt. Express 43, 623 (2018).Google Scholar
  5. 5.
    A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, et al., Appl. Phys. B 122, 211 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    J. Peppers, V. Fedorov, and S. B. Mirov, Opt. Express 23, 4406 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    P. J. Dean, B. J. Fitzpatrick, and R. N. Bhargava, Phys. Rev. B 26, 2016 (1982).ADSCrossRefGoogle Scholar
  8. 8.
    G. Neu, E. Tournié, C. Morhain, et al., Phys. Rev B 61, 15789 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    P. J. Dean, A. D. Pitt, M. S. Skolnick, et al., J. Crystal Growth 59, 301 (1982).ADSCrossRefGoogle Scholar
  10. 10.
    N. K. Morozova, I. A. Karetnikov, V. V. Blinov, and E. M. Gavrishchuk, Fiz. Tekh. Poluprovodn. 35, 25 (2001) [Semiconductors 35, 24 (2001)].Google Scholar
  11. 11.
    Y. Zhang, B. J. Skromme, S. M. Shibli, and M. C. Tamargo, Phys. Rev B 48, 10885 (1993).ADSCrossRefGoogle Scholar
  12. 12.
    L. L. Kulyuk, R. Laiho, A. V. Lashkul, et al., Physica B 405, 4330 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    I. Radevici, J. Rare Earths 32, 938 (2014).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • A. A. Pruchkina
    • 1
    Email author
  • D. F. Aminev
    • 1
  • V. V. Ushakov
    • 1
  • S. I. Chentsov
    • 1
  • A. A. Gladilin
    • 2
  • V. S. Krivobok
    • 1
  • E. E. Onischenko
    • 1
  • V. P. Kalinushkin
    • 2
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations