Advertisement

Bulletin of the Lebedev Physics Institute

, Volume 46, Issue 7, pp 219–221 | Cite as

On the Hydrogen Production during the Discharge in a Two-Phase Vapor-Liquid Flow

  • N. A. BulychevEmail author
Article
  • 3 Downloads

Abstract

The plasma discharge in a two-phase vapor-liquid flow is studied for the purpose of producing gaseous hydrogen. The parameters of such discharge are theoretically estimated. Methods and equipment for igniting the plasma discharge in such flow are developed. A flow of liquid under an excess pressure is directed to a nozzle at the reactor input in which a two-phase vapor-liquid flow is formed in the liquid at a reduced pressure due to the pressure difference and the decrease in the flow enthalpy. The reactor electrodes induce an electric field in-between using an external power supply, with the field strength exceeding the breakdown threshold of this two-phase medium, which results in the ignition of a quasi-steady low-temperature plasma glow discharge.

Keywords

electric discharge supersonic flow two-phase system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was supported in part by the Grant of the President of the Russian Federation no. MD-3964.2018.8

References

  1. 1.
    N. A. Bulychev, M. A. Kazaryan, E. S. Gridnev, et al., Kratkie Soobshcheniya po Fizike FIAN 39(7), 39 (2012) [Bulletin of the Lebedev Physics Institute 39, 214 (2012)].Google Scholar
  2. 2.
    N. Klassen, O. Krivko, V. Kedrov, et al., IEEE Trans. Nucl. Sci. 57, 1377 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    N. A. Bulychev, M. A. Kazaryan, L. L. Chaikov, et al., Kratkie Soobshcheniya po Fizike FIAN 41(9), 18 (2014) [Bulletin of the Lebedev Physics Institute 41, 264 (2014)].Google Scholar
  4. 4.
    N. A. Bulychev, M. A. Kazaryan, L. S. Lepnev, et al., Prib. Tekh. Eksp., No. 6, 71 (2016) [Instrum. Exp. Tech. 59, 842 (2016)].Google Scholar
  5. 5.
    N. A. Bulychev, M. A. Kazaryan, A. S. Averyushkin, et al., Int. J. Hydrogen Energy 42, 20934 (2017).CrossRefGoogle Scholar
  6. 6.
    N. A. Bulychev, M. A. Kazaryan, M. N. Kirichenko, et al., Proc. SPIE 10614, 1061411 (2018).Google Scholar
  7. 7.
    N. A. Bulychev, M. A. Kazaryan, A. S. Averyushkin, et al., Proc. SPIE 10614, 1061414 (2018).Google Scholar
  8. 8.
    N. A. Bulychev, M. A. Kazaryan, A. Ethiraj, and L. L. Chaikov, Kratkie Soobshcheniyapo Fizike FIAN 45(9), 11 (2018) [Bulletin of the Lebedev Physics Institute 45, 263 (2018)].Google Scholar
  9. 9.
    N. A. Bulychev, M. A. Kazaryan, L. S. Lepnev, et al., Proc. SPIE 10614, 1061413 (2018).Google Scholar
  10. 10.
    N. A. Bulychev, E. N. Murav’ev, A. A. Chernov, et al., Izv. Akad. Inzh. Nauk. Prokhorova, No. 2, 83 (2013).Google Scholar
  11. 11.
    N. A. Bulychev, E. L. Kuznetsova, V. V. Bodryshev, and L. N. Rabinskii, Nanosci. Technol. Int. J. 9(2), 91 (2018).CrossRefGoogle Scholar
  12. 12.
    N. A. Bulychev, M. A. Kazaryan, A. R. Zakharyan, et al., Proc. SPIE 10614, 1061412 (2018).Google Scholar
  13. 13.
    N. A. Bulychev, Int. Sci. J. Alternative Energy Ecol. (ISJAEE), No. 1–3, 42 (2019).CrossRefGoogle Scholar
  14. 14.
    N. A. Bulychev, Int. Sci. J. Alternative Energy Ecol. (ISJAEE), No. 4–6, 46 (2019).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Aviation InstituteMoscowRussia

Personalised recommendations