Bulletin of the Lebedev Physics Institute

, Volume 45, Issue 11, pp 369–372 | Cite as

Instabilities and Annihilation Blockade of Macrospheres in the Gravitationally Neutral Universe Model

  • S. A. TriggerEmail author


Corrections to the spectra describing Jeans instability and acoustic vibrations due to the consideration of annihilation processes in the hydrodynamic model of the gravitationally neutral Universe are obtained. The problem of annihilation of galactic clusters and anticlusters arising at the stages of the formation of massive gravitational clusters in the period following recombination of charged particles of the early Universe is also discussed. By the example of spherical macroscopic objects, it is shown that gravitational repulsion between cluster and anticluster results in the impossibility of their annihilation due to the existence of the finite closest approach distance if the latter exceeds the distance between macrosphere centers.


gravitationally-neutral Universe Jeans instability oscillation spectra annihilation blockade 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Perlmutter et al., Astrophys. J. 517, 565 (1999).ADSCrossRefGoogle Scholar
  2. 2.
    A. G. Riess et al., Astron J. 116, 1009 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    A. Ijjasa, P. J. Steinhardt, L. Abraham, Phys. Lett. B 723, 261 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    L. Perivolaropoulos, Large Scale Cosmological Anomalies and Inhomogeneous Dark Energy, arXiv:1401.5044 v1 [astro-ph.CO] (2014).CrossRefGoogle Scholar
  5. 5.
    M. Villata, Europhys. Lett. 94, 20001 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    A. Benoit-Levy and G. Chardin, Astron. Astrophys. 537, A78, 1 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    S. A. Trigger and I. A. Gribov, J. Phys.: Conf. Series 653, 012121 (2015).Google Scholar
  8. 8.
    S.A. Trigger, Yu. A. Gribov, and A. A. Ruhadze, KratkieSoobshcheniya po Fizike FIAN 42(12), 43 (2015) [Bulletin of the Lebedev Physics Institute 43, 1 (2016)].Google Scholar
  9. 9.
    I.A. Gribov and S. A. Trigger, J. Phys.:Conf. Ser. 774, 012045 (2016).Google Scholar
  10. 10.
    A. M. Ignatov and S. A. Trigger, Kratkie Soobshcheniya po Fizike FIAN 43(7), 38 (2016) [Bulletin of the Lebedev Physics Institute 43, 232 (2016)].Google Scholar
  11. 11.
    M. Giovanni, R. Jean-Louis, M. Bruce, and C. Gabriel, ”Cosmological Structure Formation with Negative Mass,” arXiv: 1804.03067v1[gr-qc] (2018).Google Scholar
  12. 12.
    L. I. Schiff, Phys. Rev. Lett. 1, 254 (1958).ADSCrossRefGoogle Scholar
  13. 13.
    Planck Collaboration “Planck 2013 Results XVI. Cosmological parameters”. arXiv:1303.5076 [astroph. CO] (2013).Google Scholar
  14. 14.
    H. El-Ad and T. Piran, Astrophys. J. 491, 421 (1997).ADSCrossRefGoogle Scholar
  15. 15.
    S. Capozziello, M. Funaro, and C. Stornatolo, Astron. Astrophys. 420, 847 (2004).ADSCrossRefGoogle Scholar
  16. 16.
    A. G. Cohen, A. De Rujula, and S. L. Glashow, A Matter-Antimatter Universe? Scholar
  17. 17.
    G. Gamow, Nature 162, 680 (1948).ADSCrossRefGoogle Scholar
  18. 18.
    Ch. Misner, K. Thorne, and J. Wheeler, Gravitation. Vol. 1–3 (Freeman and Co., San Francisco, 1973;Mir, Moscow, 1977).Google Scholar
  19. 19.
    V. A. Rubakov, “Cosmology,” arXiv:1504.03587v1 [astro-ph.CO] (2015).zbMATHGoogle Scholar
  20. 20.
    G. B. Andresen et al., Nat. Phys. 7, 55 (2011).Google Scholar
  21. 21.
    S. Aghion et al., (AEgIS Collaboration), “Prospects for Measuring the Gravitational Free-Fall of Antihydrogen with Emulsion Detectors,” http://arXiv:1306.5602 (2013).Google Scholar
  22. 22.
    G. Chardin et al., Preprint: CERN-SPSC-2011-029/SPSC-P-342 (CERN, 2011).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  2. 2.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations