Bulletin of the Lebedev Physics Institute

, Volume 45, Issue 10, pp 318–321 | Cite as

LES of Laser Initiation of Combustion of Gaseous Fuel-Air Mixture

  • Ratan JoarderEmail author
  • Awanish Pratap Singh


Large Eddy Simulation has been carried out to understand the laser initiation of combustion of lean hydrogen-air mixture in homogeneous isotropic turbulence. Initially, the blast wave from the breakdown zone sweeps out most the mixture surrounding the hot core zone at high velocity preventing formation of burning zone. The combustion initiates only if the core zone contains enough heat to sustain a steady flame thereafter.


LES laser induced ignition blast wave 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. D. Ronney, Opt. Eng. 33(2), 510 (1994).ADSCrossRefGoogle Scholar
  2. 2.
    A. P. Singh, U. P. Padhi, H. Tummalapalli, and R. Joarder, in Proceedings of the 11 th Asia-Pacific Conference on Combustion, The University of Sydney, NSW Australia, 10th–14th December (2017).Google Scholar
  3. 3.
    L. Wermer, J. Hansson, and S-k. Im, Proc. Comb. Inst., 36(3), 4427 (2017).CrossRefGoogle Scholar
  4. 4.
    D. Knight, G. Zhou, N. Okong’o, and V. Shukla, AIAA 98–0535 (1998).Google Scholar
  5. 5.
    X-s. Li, Int. J. Comp. Fl. Dyn. 30(1), 69 (2016).MathSciNetCrossRefGoogle Scholar
  6. 6.
    B. Van Leer, J. Comp. Phys. 32(1), 101 (1979).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    G. D. Van Albada, B. Van Leer, and W. W. Roberts, Astron. Astrophys. 108(1), 76 (1982).ADSGoogle Scholar
  8. 8.
    R. Peyret and D. T. Taylor, Computational Methods for Fluid Flow (Springer, Berlin, 1983).CrossRefzbMATHGoogle Scholar
  9. 9.
    J. Deardorff, J.Fl.Mech. 41(2), 453 (1970).ADSCrossRefGoogle Scholar
  10. 10.
    A. Ansari and W. Z. Strang, AIAA 96–0684 (1996).Google Scholar
  11. 11.
    G. Erlebacher, M. Hussaini, C. Speziale, and T. Zang, J. Fl. Mech. 238, 155 (1992).ADSCrossRefGoogle Scholar
  12. 12.
    J. Smagorinsky, MonthlyWeather Review 91(3), 99 (1963).ADSGoogle Scholar
  13. 13.
    J. S. Evans and C.J. Schexnayder jr., AIAA J. 18(2), 188 (1980).ADSCrossRefGoogle Scholar
  14. 14.
    M-S Liou, B. van Leer, and J-S Shuen, J. Comp. Phys. 87(1), 1 (1990).ADSCrossRefGoogle Scholar
  15. 15.
    T. R. A. Bussing and E.M. Murman, AIAA J. 26(5), 1070 (1988).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    A. W. Vreman, B. J. Geurts, J. G. M. Kuerten, and P. J. Zandbergen, Int. J. Num. Meth. Fl. 15(7), 799 (1992).CrossRefGoogle Scholar
  17. 17.
    W. Deconinck, Masters Thesis (University of Toronto, 2008).Google Scholar
  18. 18.
    K. Li, L. Zhou, and C. K. Chan, Chn. J.Chem. Eng. 22(2), 214 (2014).CrossRefGoogle Scholar
  19. 19.
    I. Dors, C. Parigger, and J. Lewis, AlAA 2000–0717 (2000).Google Scholar
  20. 20.
    R. Joarder, G. C. Gebel, and T. Mosbach, Int. J. H.M. Trans. 63, 284 (2013).CrossRefGoogle Scholar
  21. 21.
    R. Joarder, U. P. Padhi, A. P. Singh, and H. Tummalapalli, Int. J. H. M. Trans. 105, 723 (2017).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Indian Institute of TechnologyKharagpurIndia

Personalised recommendations