Advertisement

Bulletin of the Lebedev Physics Institute

, Volume 45, Issue 10, pp 314–317 | Cite as

Kinetics of C10H7Br Pyrolysis

  • M. V. Zagidullin
  • R. I. Kaiser
  • M. Ahmed
  • D. P. Porfiriev
  • I. A. Medvedkov
  • A. M. Mebel
  • V. N. Azyazov
Article
  • 8 Downloads

Abstract

The temperature and pressure-dependent rate constants for the process C10H7Br ↔ C10H7+Br were evaluated using the variable reaction coordinate transition state theory VRC-TST. The calculated rate constants and computational fluid dynamics (CFD) calculations were employed to estimate the pyrolysis efficiency of 2-bromonaphthalene in the resistively-heated SiC high-temperature “chemical reactor” at the temperature of about 1500 K. The observed 40% pyrolysis efficiency is reproduced by CFD calculations if the value of the calculated rate constant for the C10H7Br pyrolysis is increased by a factor of 2.

Keywords

bromonaphthalene pyrolysis micro-reactor master equation ab initio calculation rate constant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. W. Zhou, V. V. Kislov, and A. M. Mebel, J. Phys.Chem. A 116, 1571 (2012).CrossRefGoogle Scholar
  2. 2.
    M. Frenklach, Z. Liu, R. I. Singh, et al., Combust. and Flame 188, 284 (2018).CrossRefGoogle Scholar
  3. 3.
    Q. Guan, K. N. Urness, T. K. Ormond, et al., Int. Rev. Phys. Chem. 33, 447 (2014).CrossRefGoogle Scholar
  4. 4.
    T. Yang, R. I. Kaiser, T. P. Troy, et al., Angew. Chem., Int. Ed. 56, 4515 (2017).CrossRefGoogle Scholar
  5. 5.
    P. J. Weddle, C. Karakaya, H. Zhu, et al., Int. J. Chem. Kinet. 50, 473 (2018).CrossRefGoogle Scholar
  6. 6.
    P. Chen, S. D. Colson, W. A. Chupka, and J.A. Berson, J. Phys.Chem. 90, 2319 (1986).CrossRefGoogle Scholar
  7. 7.
    Y. Georgievskii and S. J. Klippenstein, J. Phys.Chem. A 107, 9776 (2003).CrossRefGoogle Scholar
  8. 8.
    Y. Georgievskii and S. J. Klippenstein, J. Chem. Phys. A 118, 5442 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies (Taylor & Francis; Boca Raton, USA; 2007).CrossRefGoogle Scholar
  10. 10.
    L. Zhao, R. I. Kaiser, B. Xu, et al., Nature Astronomy 2, 413 (2018) doi: 10.1038/s41550-018-0585-y.ADSCrossRefGoogle Scholar
  11. 11.
    A. W. Jasper, K. M. Pelzer, J. A. Miller, et al., Science 346, 1212 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • M. V. Zagidullin
    • 1
    • 2
  • R. I. Kaiser
    • 3
  • M. Ahmed
    • 4
  • D. P. Porfiriev
    • 1
  • I. A. Medvedkov
    • 1
  • A. M. Mebel
    • 1
    • 5
  • V. N. Azyazov
    • 1
    • 2
  1. 1.Samara National Research UniversitySamaraRussia
  2. 2.Lebedev Physical Institute, Samara BranchRussian Academy of SciencesSamaraRussia
  3. 3.University of Hawaii at ManoaHonoluluUSA
  4. 4.Lawrence Berkeley National LaboratoryBerkeleyUSA
  5. 5.Florida International UniversityMiamiUSA

Personalised recommendations