Advertisement

Bulletin of the Lebedev Physics Institute

, Volume 45, Issue 8, pp 227–229 | Cite as

Quantum-Chemical Study of Structural Stone–Wales Defect in Functionalized Fullerene C20

  • M. A. Salem
  • K. S. Grishakov
  • M. A. Gimaldinova
Article
  • 21 Downloads

Abstract

The formation energy and the Stone—Wales defect structure in fullerene C20 doped with one of functional groups H, Cl, F, or OH are calculated within the density functional theory. It is shown that the functional group type and binding site have a significant effect on the defect formation energy. It is found that the C20F compound is significantly more stable than other considered systems, i.e., C20Cl, C20H, and C20OH.

Keywords

fullerene Stone—Wales defect functional groups density functional theory formation energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).ADSCrossRefGoogle Scholar
  2. 2.
    X. Lu, Z. Chen, and P. R. Schleyer, J. Am. Chem. Soc. 127, 20 (2005).CrossRefGoogle Scholar
  3. 3.
    H. F. Bettiger, J. Phys. Chem. B 109, 6922 (2005).CrossRefGoogle Scholar
  4. 4.
    H. Prinzbach, A. Weller, P. Landenberger, et al., Nature (London) 407, 60 (2000).ADSCrossRefGoogle Scholar
  5. 5.
    A. I. Podlivaev, K. P. Katin, D. A. Lobanov, and L. A. Openov, Fiz. Tverd. Tela 53, 199 (2011) [Phys. Solid State 53, 215 (2011)].Google Scholar
  6. 6.
    A. I. Podlivaev and K. P. Katin, Pisma Zh. Eksp. Teor. Fiz. 92, 54 (2010) [JETP Lett. 92, 52 (2010)].Google Scholar
  7. 7.
    K. P. Katin and A. I. Podlivaev, Fiz. Tverd. Tela 52, 407 (2010) [Phys. Solid State 52, 436 (2010)].Google Scholar
  8. 8.
    M. M. Maslov, D. A. Lobanov, A. I. Podlivaev, L. A. Openov, Fiz. Tverd. Tela 51, 609 (2009) [Phys. Solid State 51, 645 (2009)].Google Scholar
  9. 9.
    M. M. Maslov, K. P. Katin, A. I. Avkhadieva, and A. I. Podlivaev, Khim. Fiz. 33, 27 (2014) [Russ. J. Phys. Chem. B 8, 152 (2014)].Google Scholar
  10. 10.
    S. A. Shostachenko, M. M. Maslov, V. S. Prudkovskii, and K. P. Katin, Fiz. Tverd. Tela 57, 1007 (2015) [Phys. Solid State 57, 1023 (2015)].Google Scholar
  11. 11.
    F. Pichierri, Chem. Phys. Lett. 612, 198 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    M. M. Maslov and K. P. Katin, Chem. Phys. Lett. 644, 280 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    K. P. Katin and M. M. Maslov, Physica E 96, 6 (2018).ADSCrossRefGoogle Scholar
  14. 14.
    R. W. Alder and J. N. Harvey, J. Am. Chem. Soc. 126, 2490 (2004).CrossRefGoogle Scholar
  15. 15.
    A. J. M. Nascimento and R. W. Nunes, Nanotechnology 24, 435707 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    I. N. Ioffe, O. N. Mazaleva, C. Chen, et al., Dalton Trans. 40, 11005 (2011).CrossRefGoogle Scholar
  17. 17.
    O. N. Mazaleva, I. N. Ioffe, and F. Jin, Inorg. Chem. 57, 4222 (2018).CrossRefGoogle Scholar
  18. 18.
    C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    R. Krishman, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).ADSCrossRefGoogle Scholar
  20. 20.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem. 14, 1347 (1993).CrossRefGoogle Scholar
  21. 21.
    D. W. Boukhvalov and Y.-W. Son, ChemPhysChem 13, 1463 (2012).CrossRefGoogle Scholar
  22. 22.
    K. P. Katin, V. S. Prudkovskiy, and M. M. Maslov, Phys. Lett. A 381, 2686 (2017).ADSCrossRefGoogle Scholar
  23. 23.
    K. P. Katin, V. S. Prudkovskiy, and M. M. Maslov, Physica E 81, 1 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • M. A. Salem
    • 1
  • K. S. Grishakov
    • 1
  • M. A. Gimaldinova
    • 1
  1. 1.National Research Nuclear University “MEPhI”MoscowRussia

Personalised recommendations