Advertisement

Bulletin of the Lebedev Physics Institute

, Volume 41, Issue 7, pp 185–191 | Cite as

Canonical connectivity and conservation laws in gravitation

  • R. F. PolishchukEmail author
Article
  • 24 Downloads

Abstract

The Riemann-canonical tetrad which defines, in the general case, six 2-directions of extreme values of the sectional Riemann curvature is introduced. It localizes the gravitational energy, defines the canonical 1-form of connectivity and canonical tetrad currents introduced by the author, which provide the conservation laws in the Einstein-Cartan theory.

Keywords

tetrad field gravitational energy local and nonlocal integral conservation laws tetrad currents Bianchi identities Cartan torsion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Faddeev, Usp. Fiz. Nauk 136, 435 (1982).ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    R. F. Polishchuk, “Energy-Momentum Problem in General Relativity,” in Abstracts of the 14th International Conference on General Relativity and Gravitation (GR-14), 6–12 August 1995, Florence, Italy, Ed. by M. Francaviglia et al. (Florence, 1995), pp. A130, D39.Google Scholar
  3. 3.
    R. F. Polishchuk, Gravitation and Cosmology 2,3(7), 244 (1996).zbMATHGoogle Scholar
  4. 4.
    R. Penrose and W. Rindler, Spinors and Space-Time (Cambridge Univ., Cambridge, 1986), Vols. 1–2.CrossRefGoogle Scholar
  5. 5.
    E. Witten, Comm. Math. Phys. 80, 381 (1981).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    A. Einstein, Sitzungsber. Preuss. Akad. Wiss. 1, 448 (1918).Google Scholar
  7. 7.
    L. D. Landau and E.M. Lifshitz, Field Theory (Nauka, Moscow, 1973; Oxford, Pergamon, 1977).Google Scholar
  8. 8.
    R. F. Polishchuk, Fundamental Physical Interactions and Conservation Laws (Gordon, Moscow, 2003), Vol. 1, p. 67 [in Russian].Google Scholar
  9. 9.
    V. A. Rubakov, Classical Gauge Fields (Editorial URSS, Moscow, 1999) [in Russian].Google Scholar
  10. 10.
    S. W. Hawking, “The Path Integral Approach in Quantum Gravity,” in General Relativity: An Einstein Centenary Survey, Ed. by S.W. Hawking and W. Israel (Cambridge Univ., Cambridge, 1979).Google Scholar
  11. 11.
    R. F. Polishchuk, Kratkie Soobsheniya po Fizike FIAN 35(9), 14 (2008) [Bulletin of the Lebedev Physics Institute 35, 264 (2008)].Google Scholar
  12. 12.
    E. C. Cartan, Acad. Sci. Paris 174, 593 (1922).zbMATHGoogle Scholar
  13. 13.
    T.W. Kibble, J.Math. Phys. 2, 212 (1961).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    D.W. Sciama, Recent Developments in General Relativity (Pergamon, Oxford, 1962).Google Scholar
  15. 15.
    A. L. Zelmanov, Dokl. Akad. Nauk SSSR 107, 815 (1956).MathSciNetGoogle Scholar
  16. 16.
    A. L. Zelmanov, Dokl. Akad. Nauk SSSR 124, 1030 (1959).MathSciNetGoogle Scholar
  17. 17.
    A. L. Zelmanov, Dokl. Akad. Nauk SSSR 209, 822 (1973).ADSMathSciNetGoogle Scholar
  18. 18.
    A. L. Zelmanov and V. A. Tverdokhlebova, in Abstracts of Reports at the All-Union Symposium on the Newest Problems of Gravitation, Mendeleevo, Research Institute for Physico-Technical and Radioengineering Measurements, 1973, p. 76.Google Scholar
  19. 19.
    G. de Rham, Differentiable Manifolds (Inostrannaya Literatura, Moscow, 1956) [in Russian].Google Scholar
  20. 20.
    B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry (Nauka, Moscow, 1986) [in Russian].zbMATHGoogle Scholar
  21. 21.
    C.W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973; Mir, Moscow, 1977), Vol. 2.Google Scholar
  22. 22.
    Symmetry and Conservation Laws of Equations of Mathematical Physics, Ed. by A.M. Vinogradov and I. S. Krasilshchik (Nauka, Moscow, 1997) [in Russian].Google Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations