Advertisement

Bulletin of the Lebedev Physics Institute

, Volume 41, Issue 5, pp 127–134 | Cite as

Generation of terahertz radiation in cubic non-centrosymmetric crystals

  • V. S. Gorelik
  • G. M. Katyba
Article

Abstract

The conditions of parametric radiation generation on polaritons in cubic noncentrosymmetric crystals are studied. The possibility of such generation is theoretically justified. The polariton radiation frequencies are calculated for GaP, ZnSe, ZnTe, and GaAs crystals. The obtained generation frequencies are compared to the experimental results on Raman scattering on polaritons. The block diagram of the terahertz radiation generator operation using a GaP crystal and a pulsed laser with high peak power at low energy of laser pump pulses is presented. The lasing frequency shift is analyzed depending on the scattering geometry. The coefficient of exciting radiation conversion to the terahertz range is determined.

Keywords

Raman scattering polaritons cubic crystal refractive index generator terahertz radiation laser 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. S. Litvinov and V. S. Gorelik, Electromagnetic Waves and Optics (MGTU, Moscow, 2006) [in Russian].Google Scholar
  2. 2.
    M. Born and H. Kun, Dynamic Theory of Crystal Lattices (Clarendon, Oxford, 1954; Inostrannaya Literatura, Moscow, 1958).Google Scholar
  3. 3.
    D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger. J. Opt. Soc.Am. B 7, 2006 (1990).ADSCrossRefGoogle Scholar
  4. 4.
    Yu. N. Polivanov, Usp. Fiz.Nauk 126, 185 (1978).Google Scholar
  5. 5.
    H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, Appl. Phys. Lett. 98, 091106 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Blistanov, V. S. Bondarenko, N. V. Perelomova, et al., Acoustic Crystals, Ed. by M.P. Shaskolskaya (Nauka, Moscow, 1982) [in Russian].Google Scholar
  7. 7.
    A. P. Babichev, N. A. Babushkina, A. M. Bratkovskii, et al., Physical Quantities: Handbook, Ed. by I.S. Grigoriev and E.Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].Google Scholar
  8. 8.
    A. S. Sonin and A. S. Vasilevskaya, Electro-Optic Crystals (Atomizdat, Moscow, 1971) [in Russian].Google Scholar
  9. 9.
    J. Hebling, G. Almasi, I. Z. Kozma, and J. Kulh. Opt. Express, 10, 1116 (2002).CrossRefGoogle Scholar
  10. 10.
    A. G. Stepanov, S. Henin, Y. Petit, et al., Appl. Phys. B 101, 11 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    C. H. Henry and J. J. Hopfie1d, Phys. Rev. Lett. 15, 964 (1965).ADSCrossRefGoogle Scholar
  12. 12.
    S. Ushioda and J. D. McMullen, Sol. State Comm. 11, 299 (1972).ADSCrossRefGoogle Scholar
  13. 13.
    D’Andres, V. Fornari, G. Mattel, et al., Phys. Stat. Sol. (b) 54, K131 (1972).ADSCrossRefGoogle Scholar
  14. 14.
    A. V. Bobrov and M. Krauzman, J. Raman. Spectr. 1, 365 (1973).ADSCrossRefGoogle Scholar
  15. 15.
    G. G. Mitin, V. S. Gorelik, L. A. Kulevskii, et al., Zh. Eksp. Teor. Fiz. 68, 1757 (1975).Google Scholar
  16. 16.
    J. F. Scott, P. A. Fleury, and J.M. Wor1ock, Phys. Rev. 177, 1288 (1969).ADSCrossRefGoogle Scholar
  17. 17.
    S. P. Porto, S. B. Tell., and T. S. Damen, Phys. Rev. Lett. 16, 450 (1966).ADSCrossRefGoogle Scholar
  18. 18.
    F.V. Kitaeva, L. A. Kulevskii, Yu.N. Polivanov, and S.N. Poluektov, Pisma Zh. Eksp. Teor. Fiz. 16, 23 (1972).Google Scholar
  19. 19.
    G. M. Georgiev, A. G. Mikhailovskii, A. N. Penin, and V. N. Chumash, Fiz. Tverdogo Tela 16, 2907 (1974).Google Scholar
  20. 20.
    V. S. Gorelik, A. D. Kudryavtseva, and N. V. Tcherniega, J. Russ. Laser Res. 29, 551 (2008).CrossRefGoogle Scholar
  21. 21.
    V. S. Gorelik, A. D. Kudryavtseva, N. V. Tcherniega, et al., J. Russ. Laser Res. 34, 50 (2013).CrossRefGoogle Scholar
  22. 22.
    O. V. Misochko, Usp. Fiz. Nauk 183, 917 (2013).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations