Bulletin of the Lebedev Physics Institute

, Volume 41, Issue 1, pp 6–11 | Cite as

Diffraction on the wedge with an arbitrary angle



TE and TM polarized electromagnetic wave diffraction on a perfectly conductive wedge with arbitrary apex angle is numerically studied. Amathematical model for calculating the diffraction field amplitude and intensity is developed. The solution is constructed in the entire range of physical angles without restriction to the observation point remoteness. The diffraction and field interference effects near the wedge walls are studied.


rigorous diffraction theory numerical simulation of wedge diffraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Kirchhoff, Ann. Physik 18, 663 (1883).CrossRefGoogle Scholar
  2. 2.
    A. Sommerfeld, Mathematische Annalen 47, 317 (1896).CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    A. Sommerfeld, Optics (Academic, New York, 1949; Inostrannaya Literatura, Moscow, 1953).Google Scholar
  4. 4.
    P. Frank and R. Mises, Die Differential und Integralgleichungen der Mechanik und Physik (Vieweg, Braunschweig, 1930; ONTI, Moscow, 1937).MATHGoogle Scholar
  5. 5.
    M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1980; Nauka, Moscow, 1973).Google Scholar
  6. 6.
    G. Grinberg, Selected Problems of theMathematical Theory of Electric and Magnetic Phenomena (AN SSSR, Moscow, 1948) [in Russian].Google Scholar
  7. 7.
    L. A. Vainshtein, Electromagnetic Waves (Radio i Svyaz, Moscow, 1990) [in Russian].Google Scholar
  8. 8.
    P. Ya. Ufimtsev, Edge Wave Diffraction Theory in Electrodynamics (Binom, Moscow, 2012) [in Russian].Google Scholar
  9. 9.
    M.A. Leontovich and V. A. Fok, Zh. Eksp. Teor. Fiz. 16, 557 (1946).MATHGoogle Scholar
  10. 10.
    V. A. Fok, Diffraction and Electromagnetic Wave Propagation Problems (Nauka, Moscow, 1970) [in Russian].Google Scholar
  11. 11.
    G. Green, Mathematical Papers of the Late George Green (Ferrers, London, 1871).CrossRefGoogle Scholar
  12. 12.
    I. N. Vekua, Generalized Analytical Functions (Fizmatgiz, Moscow, 1959) [in Russian].Google Scholar
  13. 13.
    A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1972) [in Russian].Google Scholar
  14. 14.
    V. S. Vladimirov, Equations of Mathematical Physics (Nauka, Moscow, 1982) [in Russian].MATHGoogle Scholar
  15. 15.
    G. D. Malyuzhinets, Dokl. Akad. Nauk SSSR 118, 1099 (1958) [Sov. Phys. Dokl.].MATHMathSciNetGoogle Scholar
  16. 16.
    V. M. Babich, M. A. Lyalinov, and V. E. Grikurov, Sommerfeld-Malyuzhinets Method in the Diffraction Theory (SPGU, St.Petersburg, 2003) [in Russian].Google Scholar
  17. 17.
    V. V. Kotlyar and D. V. Nesterenko, in Proceedings of 26th School on Coherent Optics and Holography, Irkutsk, 2007 (Papyrus, Irkutsk, 2008), p. 371.Google Scholar
  18. 18.
    V. M. Babich and A. A. Matskovskii, Zapiski Nauchnykh Seminarov POMI 369, 5 (2009).Google Scholar
  19. 19.
    A. V. Borovskii, A. N. Borodin, and A. L.Galkin, Mathematical Diffraction of a Plane Wave on a Perfectly Conductive Wedge (BGUEP, Irkutsk, 2013) [in Russian].Google Scholar
  20. 20.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Fizmatlit, Moscow, 2005; Pergamon, Oxford, 1960).Google Scholar
  21. 21.
    J. B. Keller, J. Opt. Soc. Am. 52, 116 (1962).ADSCrossRefGoogle Scholar
  22. 22.
    A. V. Borovskii, A. N. Borodin, and A. L. Galkin, Izvestiya IGEA (BGUEP) (Electronic scientific journal), No. 4, (2012).Google Scholar
  23. 23.
    A. V. Borovskii, A. N. Borodin, and A. L. Galkin, Izvestiya IGEA (BGUEP) (Electronic scientific journal), No. 5, 124 (2012).Google Scholar
  24. 24.
    A. V. Borovskii and A. L. Galkin, Izvestiya IGEA (BGUEP) (Electronic scientific journal), No. 1, (2013).Google Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  1. 1.Department of Information Science and CyberneticsBaikal State University of Economics and LawIrkutskRussia

Personalised recommendations