Bulletin of the Lebedev Physics Institute

, Volume 37, Issue 9, pp 280–283 | Cite as

Reduced multilevel atom method for calculating cosmological recombination kinetics

  • M. S. Burgin


A new method for solving the differential-algebraic set of equations, describing the kinetics of primary plasma recombination in the early Universe, is proposed. The method is based on the use of some properties of the initial high-dimensional set to construct a low-dimensional set which is mathematically equivalent in essentiality to the initial set. At the expense of certain complication of the algorithm for computing the coefficients describing the model atom with a small number of bound states, in comparison with conventional methods, complete agreement between the solution to the obtained low-dimensional set and corresponding components of the initial set is achieved. The described method allows construction of the algorithm for solving the recombination kinetics whose accuracy is comparable to integration of the complete multilevel set of kinetic equations and whose computational burden per model is comparable to the method used in the RECFAST code.

Key words

recombination of atoms kinetic equations accurate reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Seager, D. D. Sasselov, and D. Scott, Astrophys. J. Supp. 128, 407 (2000).CrossRefADSGoogle Scholar
  2. 2.
    M. S. Burgin, Astron. Zh. 80, 771 (2003) [Astron. Rep. 47, 709 (2003)].MathSciNetGoogle Scholar
  3. 3.
    S. Seager, D. D. Sasselov, and D. Scott, Astrophys. J. Lett. 523, L1 (1999).CrossRefADSGoogle Scholar
  4. 4.
    The Planck Collaboration, arXiv:astro-ph/0604069v1 (2006).Google Scholar
  5. 5.
    M. S. Burgin, Kratkie Soobshcheniya po Fizike 36(4), 26 (2009) [Bulletin of the Lebedev Physics Institute 36, 110 (2009)].Google Scholar
  6. 6.
    J. A. Rubiño-Martín, J. Chluba, and R. A. Sunyaev, Mon. Not. Royal Astron. Soc. 371, 1939 (2006).CrossRefADSGoogle Scholar
  7. 7.
    V. K. Dubrovich and N. N. Shakhvorostova, Pisma Astron. Zh. 30, 563 (2004) [Astron. Lett. 30, 509 (2004)].Google Scholar
  8. 8.
    V. K. Dubrovich and S. I. Grachev, Pisma Astron. Zh. 31, 403 (2005) [Astron. Lett. 31, 359 (2005)].Google Scholar
  9. 9.
    W. Y. Wong and D. Scott, Mon. Not. Royal Astron. Soc. 375, 1441 (2007).CrossRefADSGoogle Scholar
  10. 10.
    J. Chluba and R. A. Sunyaev, Astron. Astrophys. 480, 629 (2008).MATHCrossRefADSGoogle Scholar
  11. 11.
    C. M. Hirata, Phys. Rev. D 78, 023001 (2008).CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Allerton Press, Inc. 2010

Authors and Affiliations

  • M. S. Burgin
    • 1
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations