Advertisement

Russian Journal of Non-Ferrous Metals

, Volume 59, Issue 6, pp 664–670 | Cite as

Regularities of Metallurgical Reactions of Ti1 –n\({\text{Me}}_{n}^{{\text{V}}}\)C0.5N0.5 Carbonitrides with the Ni–Mo Melt

  • V. A. ZhilyaevEmail author
  • E. I. PatrakovEmail author
REFRACTORY, CERAMIC, AND COMPOSITE MATERIALS
  • 8 Downloads

Abstract

The influence of alloying TiC0.5N0.5 carbonitride by transition metals of Group V (V, Nb, and Ta) on the contact interaction mechanism with the Ni–25%Mo melt (T = 1450°C, τ = 1 h, rarefaction is 5 × 10–2 Pa) is systematically studied by X-ray spectral microanalysis and scanning electron microscopy for the first time. It is established that the dissolution of single-type Ti1 –n\({\text{Me}}_{n}^{{\text{V}}}\)C0.5N0.5 carbonitrides (n = 0.05) is an incongruent process (alloying metal and carbon preferentially transfer into the melt), and the relative rate and degree of incongruence of the dissolution process of carbonitrides in a series of alloying metals V–Nb–Ta vary nonmonotonically. An explanation for the discovered effects is proposed. The causal-effect relation between the initial composition of Ti0.95\({\text{Me}}_{{0.05}}^{{\text{V}}}\)C0.5N0.5 carbonitride (the grade of the alloying metal) and composition of the Ti1 – – mMon\({\text{Me}}_{m}^{{\text{V}}}\)Cx K-phase that is precipitated from the melt upon system cooling is analyzed. It is shown that the factor determining the composition of the forming K-phase is the ΔT factor (the degree of exceeding crystallization temperatures of carbide eutectics Ni/MeVC over the crystallization temperature of the Ni/Mo2C eutectic that is the lowest melting in these systems). The conclusion is argued that the interrelation between the initial carbonitride composition and the composition of the K-phase is a consequence of a microinhomogeneous structure of metallic alloys. It is shown that this interrelation is rather common and manifests itself in all studied systems irrespective of the type of alloying Group V metal and presence or absence of molybdenum in the melt.

Keywords:

Ti1 – n\({\text{Me}}_{n}^{{\text{V}}}\)C0.5N0.5 carbonitride nickel–molybdenum contact interaction reactions microstructure 

Notes

REFERENCES

  1. 1.
    Clark, E.B. and Roebuck, B., Extending the application areas for titanium carbonitride cermets, Int. J. Refract. Metal. Hard Mater., 1992, vol. 11, pp. 23–33.CrossRefGoogle Scholar
  2. 2.
    Ettmayer, P., Kolaska, H., Lengauer, W., and Dreyer, K., Ti(C, N) cermets—metallurgy and Properties, Int. J. Refract. Metal. Hard Mater., 1995, vol. 13, pp. 343–351.CrossRefGoogle Scholar
  3. 3.
    Zhang, S., Material development of titanium carbonitride-based cermets for machining application, Key Eng. Mater., 1998, vol. 138–140, pp. 521–543.Google Scholar
  4. 4.
    Xiao, J.H., Xiong, W.H., Lin, S.J., Qu, J., and Zhou, M., Review on the preparation and application of Ti(C,N)-based cermet composite, Mater. Rev., 2010, vol. 24, pp. 21–27.Google Scholar
  5. 5.
    Peng, Y., Miao, H., and Peng, Z., Development of TiCN-based cermets: Mechanical properties and wear mechanism, Int. J. Refract. Met. Hard Mater., 2013, vol. 39, pp. 78–89.CrossRefGoogle Scholar
  6. 6.
    Kang, S., Cermets. in: Comprehensive Hard Materials, Sarin, V.K., Ed., UK: Elsevier, 2014, vol. 1, pp. 139–181.Google Scholar
  7. 7.
    Rajabi, A., Ghazali, M.J., and Daud, A.R., Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermets: A review, J. Mater. Design, 2015, vol. 67, pp. 95–106.CrossRefGoogle Scholar
  8. 8.
    Zhilyaev, V.A., Patrakov, E.I., and Shveikin, G.P., Current status and potential for development of W-free hard alloys, in: Proc. 2nd Int. Conf. Sci. Hard Mater., (Rhodes, Greece, 1984), Bristol, Boston: Hilger, 1986, pp. 1063–1073.Google Scholar
  9. 9.
    Lindahl, P., Mainer, T., and Jonsson, H., Microstructure and mechanical properties of a (Ti, W, Ta, Mo) (C, N)–(Co, Ni) type cermet, Int. J. Refract. Met. Hard Mater., 1993, vol. 4, pp. 187–204.Google Scholar
  10. 10.
    Zhang, S., Qin, C.D., and Lim, L.C., Solid solution extent of WC and TaC in Ti(C, N) as revealed by lattice parameter increase, Int. J. Refract. Met. Hard Mater., 1993–1994, vol. 12, pp. 329–333.CrossRefGoogle Scholar
  11. 11.
    Park, S. and Kang, S., Toughened ultrafine (Ti, W)(CN)–Ni cermets, Scripta Mater., 2005, vol. 53, pp. 129–133.CrossRefGoogle Scholar
  12. 12.
    Kim, S.W., Ahn, S., and Kang, S., Effect of the complete solidsolution phase on the microstructure of Ti(CN)-based cermets, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, pp. 224–228.CrossRefGoogle Scholar
  13. 13.
    Liu, Y., Jin, Y., Yu, H., and Ye, J., Ultrafine (Ti, M)(C, N)-based cermets with optimal mechanical properties, Int. J. Refract. Met. Hard Mater., 2011, vol. 29, pp. 104–107.CrossRefGoogle Scholar
  14. 14.
    Chen, X., Xiong, W., Yang, Q., Yao, Z., and Huang, Y., Microstructure and mechanical properties of (Ti, W, Ta)C-xMo–Ni cermets, Int. J. Refract. Met. Hard Mater., 2012, vol. 31, pp. 56–61.CrossRefGoogle Scholar
  15. 15.
    Chicardi, E., Torres, Y., Hvizdos, P., and Gotor, F.J., Effect of tantalum content on the microstructure and mechanical behavior of cermets based on (TixTa1 – x)(C0.5N0.5) solid solutions, Mater. Design, 2014, vol. 53, pp. 435–444.CrossRefGoogle Scholar
  16. 16.
    Zhilyaev, V.A., Solid-solution nature of refractory interstitial phases. Part I. Physical substantiation, Materialovedenie, 2012, no. 3, pp. 3–9.Google Scholar
  17. 17.
    Zhilyaev, V.A., Solid-solution nature of refractory interstitial phases. Part II. Physical substantiation, Materialovedenie, 2012, no. 4, pp. 3–12.Google Scholar
  18. 18.
    Zhilyaev, V.A., Interrelation of the composition, structure and properties of refractory interstitial phases, in: G.V. Samsonovuchenyi, uchitel’, drug (G.V. Samsonov—a Scientist, Teacher, and Friend), Kislyi, P.S., Ed., Kiev: Naukova Dumka, 2012, pp. 167–180.Google Scholar
  19. 19.
    Zhilyaev, V.A. and Patrakov, E.I., Influence of alloying of TiC0.5N0.5 carbonitride by zirconium on the interaction mechanism with the Ni–Mo melt, Izv. Vyssh. Uchebn. Zaved. Poroshk. Metall. Funkts. Pokryt., 2016, no. 3, pp. 31–42.Google Scholar
  20. 20.
    Zhilyaev, V.A. and Patrakov, E.I., Kinetics and mechanism of the contact interaction of titanium carbonitride with Ni–Mo-melt, Izv. Vyssh. Uchebn. Zaved. Poroshk. Metall. Funkts. Pokryt., 2015, no. 2, pp. 30–37.Google Scholar
  21. 21.
    Zhilyaev, V.A., Powder materials based on refractory interstitial phases, Doctoral (Eng.) Dissertation, Perm’: Perm’ Gos. Tekh. Univ., 2010.Google Scholar
  22. 22.
    Serezhkin, V.N. and Pushkin, D.V., Kristallokhimicheskie radiusy i koordinatsionnye chisla atomov (Crystal Chemical Radii and Coordination Numbers of Atoms), Samara: Univers-Group, 2005.Google Scholar
  23. 23.
    Baum, B.A., Metallicheskie zhidkosti (Metal Liquids), Moscow: Nauka, 1979.Google Scholar
  24. 24.
    Gavrilin, I.V., Plavlenie i kristallizatsiya metallov i splavov (Melting and Crystallization of Metals and Alloys), Vladimir: Vladimir. Gos. Univ., 2000.Google Scholar
  25. 25.
    Zhilyaev, V.A. and Patrakov, E.I., The mechanism of liquid-phase interaction of double carbides (Ti,Me)C with nickel, Konstr. Kompoz. Mater., 2006, no. 4, pp. 199–201.Google Scholar
  26. 26.
    Diagrammy sostojanija dvojnyh metallicheskih system: Spravochnik (Phase Diagrams of Binary Metallic Systems: Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996.Google Scholar
  27. 27.
    Ershov, G.S. and Maiboroda, V.P., Diffuziya v metallurgicheskikh rasplavakh (Diffusion in Metallurgical Melts), Kiev: Naukova Dumka, 1990.Google Scholar
  28. 28.
    Zhilyaev, V.A. and Patrakov, E.I., Effect of doping by Group IV–VI transition metals of titanium carbonitride on the interaction with the nickel melt, Izv. Vyssh. Uchebn. Zaved. Poroshk. Metall. Funkts. Pokryt., 2014, no. 4, pp. 30–36.Google Scholar
  29. 29.
    Zhilyaev, V.A. and Patrakov, E.I., Regularities of the contact interaction of (Ti1–n \({\text{Me}}_{n}^{{{\text{IV}}{\text{,V}}}})\)C double carbides with the Ni–Mo melt, Izv. Vyssh. Uchebn. Zaved. Poroshk. Metall. Funkts. Pokryt., 2015, no. 3, pp. 25–35.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Solid-State Chemistry, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  2. 2.Institute of Metal Physics, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations