Russian Journal of Non-Ferrous Metals

, Volume 59, Issue 6, pp 693–697 | Cite as

Investigation into the X-Radiation Effect on the Structure and Microhardness of the Tungsten Powder-Filled Composite

  • A. A. LozovanEmail author
  • F. E. VilkovEmail author


The radiation resistance of a composite material filled with finely dispersed tungsten powder with a particle size of 200–500 nm is investigated. A new composite is intended to provide the radiation protection for electronic radio equipment. The sample with the material under study is irradiated by continuous-spectrum X-ray radiation to the absorbed dose of 3 MGy. The variation in the sample microhardness before and after X-ray irradiation serves as the radiation-resistance characteristic. The microstructure of the transverse sample cleavage after irradiation is investigated by scanning electron microscopy and the absence of visible structural defects is established. This result can be explained by uniform energy scattering from local stresses due to a high degree of composite filling with the tungsten powder possessing a high heat-conductivity coefficient. A 10% increase in microhardness of the irradiated sample is revealed during the investigation, which can be explained by the radiation strengthening effect, when the simultaneous rise in microhardness occurs with an increase in strength. It is established experimentally that this effect manifests itself with an increase in the absorbed radiation dose.


dispersion-filled composite finely dispersed tungsten powder radiation resistance microhardness scanning electron microscopy X-ray radiation absorbed dose 



  1. 1.
    Lohmeyer, W.Q. and Cahoy, K., Space weather radiation effects on geostationary satellite solid-state power amplifiers, Space Weather, 2013, vol. 11, pp. 476–488.CrossRefGoogle Scholar
  2. 2.
    Zeynali, O., Masti, D., and Gandomkar, S., Shielding protection of electronic circuits against radiation effects of space high energy particles, Adv. Appl. Sci. Res., 2012, vol. 3, no. 1, pp. 446–451.Google Scholar
  3. 3.
    Hess, Wilmot N., Energetic particles in the inner Van Allen belt, Space Sci. Rev., 1962, vol. 1, pp. 278–312.CrossRefGoogle Scholar
  4. 4.
    Wilson, J.W., Thibeault, S.A., Cucinotta, F.A., Shinn, J.L., Kim, M., Kiefer, R., and Badavi, F.F., Issues in protection from galactic cosmic rays, Radiat. Environ. Biophys., 1995, vol. 34, pp. 217–222.CrossRefGoogle Scholar
  5. 5.
    Boudenot, J.-Cl, Radiation space environment, in: Radiation Effects on Embedded Systems, Dordrecht: Springer, 2007, pp. 1–9.Google Scholar
  6. 6.
    Model' kosmosa: Nauchno-informatsionnoe izdanie (Model of the Space: Scientific-and-Information Edition), Panasyuk, M.I. and Novikov, L.S., Eds., Moscow: KDU, 2007, vol. 1.Google Scholar
  7. 7.
    Rawal, Suraj P., Metal-matrix composites for space applications, J. Miner. Met. Mater. Soc., 2001, vol. 53, pp. 14–17.CrossRefGoogle Scholar
  8. 8.
    Noor Azman Nurul, Z., Siddiqu Salim, A., and Low, It.M., Synthesis and characterization of epoxy composites filled with Pb, Bi or W compound for shielding of diagnostic X-rays, Appl. Phys., 2013, vol. 110, pp. 137–144.CrossRefGoogle Scholar
  9. 9.
    Pavlenko, V.I., Yastrebinskii, R.H., Edamenko, O.D., and Tarasov, D.G., Effect of high-energy fast electron beams on polymeric radiation-protected composites, Vopr. At. Nauki Tekh. Ser. Fiz. Radiat. Povrezhd. Radiat. Materialoved., 2010, no. 1, pp. 129–134.Google Scholar
  10. 10.
    Grishina, A.N. and Korolev, E.V., Zhidkostekol’nye stroitel’nye materialy spetsial’nogo naznacheniya (Liquid-Glass Special Building Materials), Moscow: Mos. Gos. Str. Univ., 2015.Google Scholar
  11. 11.
    Vilkov, F.E., Vladimirov, B.V., Tolmachev, V.I., Bocharov, E.N., Agafonov, R.Yu., and Popkova, O.G., RF Patent 2605608, 2016.Google Scholar
  12. 12.
    Vilkov, F.E., Lozovan, A.A., Bazhanov, A.V., Kasitsyn, A.N., Shchekoturova, O.E., and Solovev, M.K., Investigation of radiation-protective properties of highly filled liquid glass material, J. Surf. Invest.: X-ray, Synch. Neutron Tech., 2017, vol. 11, no. 5, pp. 912–916.CrossRefGoogle Scholar
  13. 13.
    Källen, G., Elementary Particle Physics, MA: Addison-Wesley, 1964.Google Scholar
  14. 14.
    Nilam, S., Singh, N.L., Desai, C.F., and Singh, K.P., Microhardness and radiation damage studies of proton irradiated Kapton films, Radiat. Meas., 2003, vol. 36, pp. 699–702.CrossRefGoogle Scholar
  15. 15.
    Ganeev, R.A., Low-power laser hardening of steels, J. Mater. Process. Technol., 2002, vol. 121, pp. 414–419.CrossRefGoogle Scholar
  16. 16.
    Manas, D., Hribova, M., Manas, M., Ovsik, M., Stanek, M., and Samek, D., The effect of beta irradiation on morphology and micro hardness of polypropylene thin layers, Thin Solid Films, 2013, vol. 530, pp. 49–52.CrossRefGoogle Scholar
  17. 17.
    Shah, N., Singh, D., Shah, S., Qureshi, A., Singh, N.L., and Singh, K.P., Study of microhardness and electrical properties of proton irradiated polyethersulfone (PES), Bull. Mater. Sci., 2007, vol. 30, pp. 477–480.CrossRefGoogle Scholar
  18. 18.
    Golovin, Y.I., Dmitrievskii, A.A., Suchkova, N.Y., and Badylevich, M.V., Multistage radiation-stimulated changes in the microhardness of silicon single crystals exposed to low-intensity β irradiation, Phys. Solid State, 2005, vol. 47, pp. 1278–1281.CrossRefGoogle Scholar
  19. 19.
    GOST (State Standard) 9450–76: Measurement of microhardness by indentation of diamond tips, Moscow: Izd. Standartov, 1977.Google Scholar
  20. 20.
    Bezrodnih, I.P., Morozova, E.I., and Pertukovich, A.A., Radiation conditions in geostationary orbit, Vopr. Elektromekh., Tr. NPP “VNIIEM”, 2010, vol. 117, no. 4, pp. 33–42.Google Scholar
  21. 21.
    Bezdornih, I.P., Kazantsev, S.G., and Semenov, V.T., Radiation conditions in sun-synchronous orbits during the period of maximum solar activity, Vopr. Elektromekh., Tr. NPP “VNIIEM”, 2010, vol. 116, no. 3, pp. 23–26.Google Scholar
  22. 22.
    Panasyuk, M.I., Podzolko, M.V., Kovtyukh, A.S., Osedlo, V.I., Tulupov, V.I., and Yashin, I.V., Modeling radiation conditions in orbits of projected system of small satellites for radiation monitoring, Cosmic Res., 2016, vol. 54, pp. 411–415.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Moscow Aviation Institute (National Research University)MoscowRussia

Personalised recommendations