Advertisement

Russian Journal of Non-Ferrous Metals

, Volume 59, Issue 4, pp 393–402 | Cite as

Regularities of Formation and Degradation of the Microstructure and Properties of New Ultrafine-Grained Low-Modulus Ti–Nb–Mo–Zr Alloys

  • Yu. R. Kolobov
  • O. A. Golosova
  • S. S. Manokhin
Pressure Treatment of Metals
  • 19 Downloads

Abstract

Abstract—Regularities of the formation of ultrafine-grained (UFG) and submicrocrystalline (SMC) structures in new nickel-free low-modulus Ti–Nb–Mo–Zr titanium β alloys under the action of plastic deformation have been studied. Temperature–time ranges of the development of dynamic recrystallization processes under the simultaneous action of temperature and plastic deformation are determined. A type-II recrystallization diagram of the Ti–28Nb–8Mo–12Zr alloy is constructed and analyzed. It is shown using scanning electron microscopy and the electron backscatter diffraction method that the UFG structure with an average grain size of no more than 7 μm and high fraction of high-angle grain boundaries is formed in the investigated alloys as a result of longitudinal rolling, followed by annealing for quenching. It is found that the formation of the UFG structure leads to a significant increase in the strength and plastic characteristics of these alloys. The regularities of the formation of UFG and SMC structures in titanium β alloys Ti–28Nb–8Mo–12Zr and industrial VT30 under the action of plastic deformation by the helical rolling method are studied. It is shown that the helical rolling of the VT30 alloy leads to the formation of the homogeneous UFG state as opposed to the Ti–28Nb–8Mo–12Zr alloy, where this method causes structure softening with micropores and microcracks formed in the central region. It is possible to form a nanostructured state with an average grain size of about 100 nm in Ti–Nb–Mo–Zr titanium β alloys using the high-pressure torsion method.

Keywords

low-modulus titanium alloy ultrafine-grained structure nanostructured state mechanical properties helical rolling severe plastic deformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kolobov, Yu.R., Nanotechnologies for the formation of medical implants based on titanium alloys with bioactive coatings, Nanotechnol. Russ., 2009, vol. 4, nos. 11–12, pp. 758–775.CrossRefGoogle Scholar
  2. 2.
    Stráskýa, J., Harcubaa, P., Václavováa, K., Horváth, K., Landa, M., Srba, O., and Janeček, M., Increasing strength of a biomedical Ti–Nb–Ta–Zr alloy by alloying with Fe, Si and O. J. Mechan. Behav. Biomed. Mater., 2017, vol. 71, pp. 329–336.CrossRefGoogle Scholar
  3. 3.
    Wong, J.Y. and Bronzino, J.D., Biomaterials, Boca Raton: CRC, Taylor & Francis, 2007.CrossRefGoogle Scholar
  4. 4.
    Gunawarman, B., Niinomi, M., Akahori, T., Souma, T., Ikeda, M., and Tada, H., Mechanical properties and microstructure of low cost β-titanium alloys for healthcare applications. Mater. Sci. Eng. C, 2005, vol. 25, no. 3, pp. 304–311.CrossRefGoogle Scholar
  5. 5.
    Geetha, M., Singh, A.K., Asokamani, R., and Gogia, A.K., Ti based biomaterials, the ultimate choice for orthopedic implants: A review, Progr. Mater. Sci., 2009, vol. 54, pp. 397–425.CrossRefGoogle Scholar
  6. 6.
    Yaszemski, M.J., Trantolo, D.J., Lewandrowski, K., and Hasirci, V., Biomaterials in Orthopedics, New York: Marcel Dekker, 2004.Google Scholar
  7. 7.
    Long, Marc and Rack, H.J., Titanium alloys in total joint replacement—material science perspective, Biomaterials, 1998, vol. 19, pp. 1621–1639.Google Scholar
  8. 8.
    Epple, M., Biomaterialien und Biomineralisation, Wiesbaden: Vieweg + Teubner, 2003.CrossRefGoogle Scholar
  9. 9.
    Peterson, D.R. and Bronzino, J.D., Biomechanics Principles and Applications, Boca Raton: CRC, Taylor & Francis, 2008.Google Scholar
  10. 10.
    Niinomi, M., Nakai, M., and Heida J., Development of new metallic alloys for biomedical applications, Acta Biomater., 2012, vol. 8, no. 11, pp. 3888–3903.CrossRefGoogle Scholar
  11. 11.
    Leyens, C. and Peter, M., Titanium and Titanium Alloys. Fundamentals and Applications, Weinheim: Wiley, 2003.CrossRefGoogle Scholar
  12. 12.
    Ranter, B.D., Hoffman, A.S., Schoen, F.J., and Lemons, J.E., Biomaterials Science: An Introduction to Materials in Medicine, San Diego: Elsevier, 2004, 2nd ed.Google Scholar
  13. 13.
    Hanawa, T., Hiromoto, S., and Yamamoto, A., Metallic biomaterials in body fluid and their surface modification, in Structural Biomaterials for the 21 Century, New Orleans: TMS, 2001, pp. 145–154.Google Scholar
  14. 14.
    Niinomi, M., Recent research and development in titanium alloys for biomedical applications and healthcare goods, Sci. Technol. Adv. Mater., 2003, vol. 4, pp. 445–454.CrossRefGoogle Scholar
  15. 15.
    Lee, C.M., Ju, C.P., and Lin, J.H. Chern, Structureproperty relationship of cast Ti–Nb alloys, J. Oral Rehabilit., 2002, vol. 29, pp. 314–322.CrossRefGoogle Scholar
  16. 16.
    Kollerov, M.Yu., Il’in, A.A., and Skvortsova, S.V., Effect of system and degree of alloying on the characteristics of shape memory effect of titanium alloys, Metally, 2001, no. 2, pp. 74–78.Google Scholar
  17. 17.
    Sheremetev, V.A., Prokoshkin, S.D., Brailovskii, V., Dubinskii, S.M., Korotitskii, A.V., Filonov, S.M., and Petrzhik, M.I., Investigation of the structure stability and superelastic behavior of thermomechanically treated Ti–Nb–Zr and Ti–Nb–Ta shape-memory alloys, Phys. Met. Metallogr., 2015, vol. 116, no. 4, pp. 413–422.CrossRefGoogle Scholar
  18. 18.
    Konopatskii, A.S., Zhukova, Yu.S., Dubinskii, S.M., Korobkova, A.A., Filonov, M.P., and Prokoshkin, S.D., Microstructure of superplastic alloys based on Ti–Nb for medical purposes, Metallurgist, 2016, vol. 60, pp. 223–228.CrossRefGoogle Scholar
  19. 19.
    Niinomi, M., Metallic biomaterials, Jap. Soc. Artif. Org., 2008, vol. 11, no. 3, pp. 105–110.CrossRefGoogle Scholar
  20. 20.
    Sakaguchi, N., Niinomi, M., Akahori, T., Takeda, J., Toda, H., Relationships between tensile deformation behavior and microstructure in Ti–Nb–Ta–Zr system alloys, Mater. Sci. Eng. C, 2005, no. 25, pp. 363–369.CrossRefGoogle Scholar
  21. 21.
    Conzalez, M., Pena, J., Manero, J.M., Arciniegas, M., and Gil, F.J., Design and characterization of new Ti–Nb–Hf alloys, J. Mater. Eng. Perform., 2009, vol. 18 (5–6), pp. 490–495.CrossRefGoogle Scholar
  22. 22.
    Nitta, K., Watanabe, S., and Masahashi, N., Ni-free Ti–Nb–Sn shape memory alloys, in: Structural biomaterials for the 21 century, New Orleans: TMS, 2001, pp. 25–34.Google Scholar
  23. 23.
    Kawashima, A., Watanabe, S., Asami, K., and Hanada, S., XPS study of corrosion behavior of Ti–18Nb–4Sn shape memory alloy in a 0.05 mass % HCl solution, Mater. Trans., 2003, vol. 44, no. 7, pp. 1405–1411.CrossRefGoogle Scholar
  24. 24.
    Kolobov, Yu.R., Valiev, R.Z., and Grabovetskaya, G.P., Grain-Boundary Diffusion and Properties of Nanostructured Materials, UK: Cambridge Int. Science, 2007.Google Scholar
  25. 25.
    Kolobov, Yu.R., Lipnitskii, A.G., Ivanov, M.B., and Golosov, E.V., Role of the diffusion-controlled processes in the formation of structure and properties of metallic materials, Compos. Nanostr., 2009, no. 2, pp. 5–24.Google Scholar
  26. 26.
    Andrievskii, R.A. and Glezer, A.M., Strength of nanostructures, Usp. Fiz. Nauk, 2009, vol. 179, no. 4, pp. 337–358.CrossRefGoogle Scholar
  27. 27.
    Dubinskiy, S., Brailovski, V., Prokoshkin, S., Pushin V., Inaekyan, K., Sheremetyev, V., Petrzhik, M., and Filonov, M., Structure and properties of Ti–19.7Nb–5.8Ta shape memory alloy subjected to thermomechanical processing including aging, J. Mater. Eng. Perform., 2013, vol. 22, no. 9, pp. 2656–2664.CrossRefGoogle Scholar
  28. 28.
    Hao, Y.L., Zhang, Z.B., Li, S.J., and Yang, R., Microstructure and mechanical behavior of a Ti–24Nb–4Zr–8Sn alloy processed by warm swaging and warm rolling, Acta Mater., 2012, vol. 60, pp. 2169–2177.CrossRefGoogle Scholar
  29. 29.
    Václavová, K., Stráský, J., Veselý, J., Gatina, S., Polyakova, V., Semenova, I., and Janeček, M., Evolution of microstructure and microhardness in Ti–15Mo β-Ti alloy prepared by high pressure torsion, Mater. Sci. Forum., 2016, vol. 879, no. 9, pp. 2555–2560.CrossRefGoogle Scholar
  30. 30.
    Gatina, S., Semenova, I., Leuthold, J., and Valiev, R., Nanostructuring and phase transformations in the β-Alloy Ti–15Mo during high-pressure torsion, Adv. Eng. Mater., 2015, vol. 17, no. 12, pp. 1742–1747.CrossRefGoogle Scholar
  31. 31.
    Janeček, M., Čížek, J., Stráský, J., Václavová, K., Hruška, P., Polyakova, V., Gatina, S., and Semenova, I., Microstructure evolution in solution treated Ti15Mo alloy processed by high pressure torsion, Mater. Charact., 2014, vol. 98, pp. 233–240.CrossRefGoogle Scholar
  32. 32.
    Yilmazer, H., Niinomi, M., Nakai, M., Cho, K., Hieda, J., Todaka, Y., and Miyazaki, T., Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion, Mater. Sci. Eng. C, 2013, vol. 33, pp. 2499–2507.CrossRefGoogle Scholar
  33. 33.
    Golosova, O.A., Ivanov, M.B., Vershinina, T.N., and Kolobov, Yu.R., Structure and properties of low modulus titanium alloy Ti–26Nb–7Mo–12Zr, Mater. Sci. Technol., 2013, vol. 29, no. 2, pp. 204–209.CrossRefGoogle Scholar
  34. 34.
    Betekhtin, V.I., Kolobov, Yu.R., Golosova, O.A., Kardashev, B.K., Kadomtsev, A.G., Narykova, M.V., Ivanov, M.B., and Vershinina, T.N., Elastoplastic properties of a low-modulus titanium-based β alloy, Technical Phys., 2013, vol. 58, no. 10, pp. 1432–1436.CrossRefGoogle Scholar
  35. 35.
    Betekhtin, V.I., Kolobov, Yu.R., Golosova, O.A., Dvorak, J., Sklenicka, V., Kardashev, B.K., Kadomtsev, A.G., Narykova, M.V., and Ivanov, M.B., Elastic modulus, microplastic properties and durability of titanium alloys for biomedical applications, Rev. Adv. Mater. Sci., 2016, vol. 45, no. 1/2, pp. 42–51.Google Scholar
  36. 36.
    Kydryashov, S.I., Golosova, O.A., Kolobova, A.Yu., Kolobov, Yu.R., and Golosov, E.V., Comparative investigation of the features of the nanostructuring surface relief of α- and β-titanium alloys at pulsed femtosecond laser irradiation, Compoz. Nanostr., 2014, vol. 6, no. 3, pp. 2–11.Google Scholar
  37. 37.
    Kolobov, Yu.R., Golosov, E.V., Ratochka, I.V. Features of submicrocrystalline structure and its effect on mechanical properties of titanium alloys, Vopr. Materialoved., 2008, vol. 2, no. 54, pp. 43–50.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • Yu. R. Kolobov
    • 1
    • 3
  • O. A. Golosova
    • 2
  • S. S. Manokhin
    • 3
  1. 1.Belgorod State National Research UniversityBelgorodRussia
  2. 2.Merzhanov Institute of Structural Macrokinetics and Materials ScienceRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  3. 3.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations